Skip to main content
Log in

Oxidation of organosulfur compounds promoted by continuous-flow chemistry

  • Review
  • Published:
Journal of Flow Chemistry Aims and scope Submit manuscript

Abstract

Organosulfur compounds are important moieties found in several medicinal drugs used in the therapy of arthritis, cancer, depression, diabetes or immune deficiency syndrome. Furthermore, organosulfur compounds are intermediates in many organic reactions with a key role as ligands or chiral auxiliaries. Due to their importance in various areas as pharmaceutical chemistry, synthetic organic chemistry, as well as materials science, the development of new and more sustainable synthetic protocols to provide access to different organosulfur compounds, has a high impact on the broader chemistry community. Many interesting transformations of organosulfur compounds involve an oxidation reaction to access to organosulfur derivatives such as disulfide, sulfinyl or sulfones. Organosulfur oxidation is typically carried out using different oxidant agents such as peroxides, peracids or using atmosphere oxygen under photocatalysis. Despite the numerous procedures reported in the academia, the developments of oxidation of organosulfur compounds with an industrial interest has been limited in regard to the scaling-up, sustainable and safer process. In this context, the use of continuous-flow technology has allowed overcome the disadvantaged of batch approach and is a bridge to connect the academia with the industry. The aim of this review is to highlight the importance of applying flow chemistry methodology as a greener and scalable process in the oxidation of organosulfur compounds. Additionally, a critical view of the different developed methodologies and a future view in the employ of organosulfur oxidation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16

Similar content being viewed by others

References

  1. Rafiee E, Nobakht N (2015) Keggin type heteropoly acid, encapsulated in metal-organic framework: A heterogeneous and recyclable nanocatalyst for selective oxidation of sulfides and deep desulfurization of model fuels. J Mol Cat A Chem 398:17–25

    CAS  Google Scholar 

  2. Ilardi EA, Vitaku E, Njardarson JT (2014) Data-Mining for Sulfur and Fluorine: an evaluation of pharmaceuticals to reveal opportunities for drug design and discovery. J Med Chem 57:2832–2842

    CAS  PubMed  Google Scholar 

  3. Viswanatharaju Ruddraraju K, Parsons ZD, Lewis CD, Gates KS (2017) Allylation and alkylation of biologically relevant nucleophiles by Diallyl sulfides. J Organomet Chem 82:776–780

    CAS  Google Scholar 

  4. Nohara T, Fujiwara Y, Ikeda T, Murakami K, Ono M, Nakano D, Kinjo J (2013) Cyclic Sulfoxides Garlicnins B2, B3, B4, C2, and C3 from Allium sativum. Chem Pharm Bull 61:695–699

    CAS  Google Scholar 

  5. Hartz RA et al (2006) Synthesis and evaluation of 2-anilino-3-phenylsulfonyl-6-methylpyridines as corticotropin-releasing factor1 receptor ligands. Bioorg Med Chem Lett 16:934–937

    CAS  PubMed  Google Scholar 

  6. Jia T, Wang M, Liao J (2019) Chiral Sulfoxide ligands in asymmetric catalysis. Top Curr Chem 377:1–29

    CAS  Google Scholar 

  7. Trost BM, Rao M (2015) Development of chiral Sulfoxide ligands for asymmetric catalysis. Angew Chem Int Ed 54:5026–5043

    CAS  Google Scholar 

  8. Cantwell KE, Fanwick PE, Abu-Omar MM (2017) Mild, selective Sulfoxidation with molybdenum(VI) cis-Dioxo Catalysts. ACS Omega 2:1778–1785

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Fareghi-Alamdari R, Zekri N, Moghadam AJ, Farsani MR (2017) Green oxidation of sulfides to sulfoxides and sulfones with H2O2 catalyzed by ionic liquid compounds based on Keplerate polyoxometalates. Catal Commun 98:71–75

    CAS  Google Scholar 

  10. Amini M, Najafpour MM, Salimi S, Ramezani S, Ashouri F, Mahmoudi G (2017) Iron oxide on carbon-based supports as efficient catalysts for organic compounds oxidation. App Organometal Chem 31:e3892

    Google Scholar 

  11. Mangaonkar SR, Kole PB, Singh FV (2018) Oxidation of Organosulfides to Organosulfones with Trifluoromethyl 3-Oxo-1λ3,2-benziodoxole-1(3H)-carboxylate as an oxidant. Synlett 29:199–202

    CAS  Google Scholar 

  12. Chao D, Zhao M (2017) Robust Cooperative Photo-oxidation of Sulfides without Sacrificial Reagent under Air Using a Dinuclear RuII–CuII Assembly. ChemSusChem 10:3358–3362

    CAS  PubMed  Google Scholar 

  13. Fanelli F, Parisi G, Degennaro L, Luisi R (2017) Contribution of microreactor technology and flow chemistry to the development of green and sustainable synthesis Beilstein. J Organomet Chem 13:520–542

    CAS  Google Scholar 

  14. Gemoets HPL, Hessel V, Noël T (2016) In Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives, pp. 397–419

    Google Scholar 

  15. Gemoets HPL, Su Y, Shang M, Hessel V, Luque R, Noël T (2016) Liquid phase oxidation chemistry in continuous-flow microreactors. Chem Soc Rev 45:83–117

    CAS  PubMed  Google Scholar 

  16. Hone CA, Kappe CO (2019) The use of molecular oxygen for liquid phase aerobic oxidations in continuous flow. Top Curr Chem 377:2

    Google Scholar 

  17. Maggi R, Chitsaz S, Loebbecke S, Piscopo CG, Sartoria G, Schwarzerb M (2011) Highly chemoselective metal-free oxidation of sulfides with diluted H2O2 in a continuous flow reactor. Green Chem 13:1121–1123

    CAS  Google Scholar 

  18. Silva F, Baker A, Stansall J, Michalska W, Yusubov MS, Graz M, Saunders R, Evans GJS, Wirth T, (2018) Selective oxidation of sulfides in flow chemistry. Eur J Org Chem. 2134-2137

    CAS  Google Scholar 

  19. Kulkarni AA, Nivangune NT, Joshi RR, Joshi RA (2013) Continuous flow multipoint dosing approach for selectivity engineering in sulfoxidation. Org Process Res Dev 17:1293–1299

    CAS  Google Scholar 

  20. Doherty S, Knight JG, Carroll MA, Ellison JR, Hobson SJ, Stevens S, Hardacre C, Goodrich P (2015) Efficient and selective hydrogen peroxidemediated oxidation of sulfides in batch and segmented and continuous flow using a peroxometalate-based polymer immobilised ionic liquid phase catalyst. Green Chem 17:1559–1571

    CAS  Google Scholar 

  21. Doherty S, Knight JG, Carroll MA, Clemmet AR, Ellison JR, Backhouse T, Holmesb N, Bourneb RA (2016) Efficient and selective oxidation of sulfides in batch and continuous flow using styrene-based polymer immobilised ionic liquid phase supported peroxotungstates. RSC Adv 6:73118–73131

    CAS  Google Scholar 

  22. Pye SJ, Dalgarno SJ, Chalker JM, Raston CL (2018) Organic oxidations promoted in vortex driven thin films under continuous flow. Green Chem 20:118–124

    CAS  Google Scholar 

  23. Bull JA, Degennaro L, Luisi R (2017) Straightforward strategies for the preparation of NH-Sulfox­imines: a serendipitous story. Synlett 28:2525–2538

    CAS  Google Scholar 

  24. Degennaro L, Tota A, Angelis SD, Andresini M, Cardellicchio C, Capozzi MA, Romanazzi G, Luisi R, (2017) A convenient, mild, and green synthesis of NH-sulfoximines in flow reactors. Eur J Org Chem, 6486-6490

    CAS  Google Scholar 

  25. Laudadio G, Straathof NJW, Lanting MD, Knoops B, Hessel V, Noël T (2017) An environmentally benign and selective electrochemical oxidation of sulfides and thiols in a continuous-flow microreactor. Green Chem 19:4061–4066

    CAS  Google Scholar 

  26. Laudadio G, de Smet W, Struik L, Cao Y, Noël T (2018) Design and application of a modular and scalable electrochemical flow microreactor. J Flow Chem 8:157–165

    PubMed  PubMed Central  Google Scholar 

  27. Laudadio G, Barmpoutsis E, Schotten C, Struik L, Govaerts S, Browne DL, Noël T (2019) Sulfonamide Synthesis through Electrochemical Oxidative Coupling of Amines and Thiols. J Am Chem Soc 141:5664–5668

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Laudadio G, Bartolomeu AA, Verwijlen LMHM, Cao Y, de Oliveira KT, Noël T (2019) Sulfonyl Fluoride Synthesis through Electrochemical Oxidative Coupling of Thiols and Potassium Fluoride. J Am Chem Soc 141:11832–11836

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gu X, Li X, Chai Y, Yang Q, Li P, Yao Y (2013) A simple metal-free catalytic sulfoxidation under visible light and air. Green Chem 15:357–361

    CAS  Google Scholar 

  30. Lebel H, Piras H, Borduy M (2016) Iron-catalyzed amination of sulfides and sulfoxides with azides in photochemical continuous flow synthesis. ACS Catal 6:1109–1112

    CAS  Google Scholar 

  31. Casado-Sánchez A, Gómez-Ballesteros R, Tato F, Soriano FJ, Pascual-Coca G, Cabrera S, Alemán J (2016) Pt(ii) coordination complexes as visible light photocatalysts for the oxidation of sulfides using batch and flow processes. Chem Commun 52:9137–9140

    Google Scholar 

  32. Bottecchia C, Erdmann N, Tijssen PMA, Milroy L-G, Brunsveld L, Hessel V, Noël T (2016) Batch and flow synthesis of disulfides by visible-light-induced TiO2 photocatalysis. ChemSusChem 9:1781–1785

    CAS  PubMed  Google Scholar 

  33. Lang X, Chen X, Zhao J (2014) Heterogeneous visible light photocatalysis for selective organic transformations. Chem Soc Rev 43:473–486

    CAS  PubMed  Google Scholar 

  34. Emmanuel N, Mendoza C, Winter M, Horn CR, Vizza A, Dreesen L, Heinrichs B, Monbaliu J-CM (2017) Scalable Photocatalytic oxidation of methionine under continuous-flow conditions. Org Process Res Dev 21:1435–1438

    CAS  Google Scholar 

  35. Schapp A, Thayer A, Blossey E, Neckers D (1975) Polymer-based sensitizers for photooxidations. II. J Am Chem Soc 97:3741–3745

    Google Scholar 

  36. Xu D, Neckers D (1987) Aggregation of rose bengal molecules in solution. J Photochem Photobiol A 40:361–370

    CAS  Google Scholar 

  37. Kong CJ, Fisher D, Desai BK, Yang Y, Ahmad S, Belecki K (2017) High throughput photo-oxidations in a packed bed reactor system. Bioorg Med Chem 25:6203–6208

    CAS  PubMed  Google Scholar 

  38. Straathof NJW, Su Y, Hessel V, Noël T (2016) Accelerated gas-liquid visible light photoredox catalysis with continuous-flow photochemical microreactors. Nat Protoc 11:10–21

    CAS  PubMed  Google Scholar 

  39. Cambié D, Dobbelaar J, Riente P, Vanderspikken J, Shen C, Seeberger PH, Gilmore K, Debije MG, Noël T (2019) Energy-efficient solar photochemistry with luminescent solar concentrator based Photomicroreactors. Angew Chem Int Ed 58:14374–14378

    Google Scholar 

  40. Britton J, Majumdar S, Weiss GA (2018) Continuous flow biocatalysis. Chem Soc Rev 47:5891–5918

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Goundry WRF et al (2017) Development and scale-up of a biocatalytic process to form a chiral Sulfoxide. Org Process Res Dev 21:107–113

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Secretaría de Ciencia y Tecnología (SeCyT), Universidad Nacional de Córdoba (UNC) and Fondo para la Investigación Científica y Tecnológica Argentina (FONCyT). FP gratefully acknowledges receipt of a fellowship from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Pablo Colomer or Gabriela Oksdath-Mansilla.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colomer, J.P., Traverssi, M. & Oksdath-Mansilla, G. Oxidation of organosulfur compounds promoted by continuous-flow chemistry. J Flow Chem 10, 123–138 (2020). https://doi.org/10.1007/s41981-019-00066-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41981-019-00066-5

Keywords

Navigation