Skip to main content
Log in

A Protective Film Produced by Whey Protein for Photonic Crystals: Inspired by the Epidermis Structure of Chameleon

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Self-assembly technology of sub-micrometer-sized colloidal particles is the most promising approach for the preparation of large-area Photonic Crystals (PCs). However, PCs obtained by this method are facile to be destroyed by external factors such as friction, impact, and pollutants. The highly keratinized epidermis of chameleon skin acts as a protective role for the dermis with photon cells of the tunable band-gap structure. Inspired by the epidermis structure of chameleon, we use whey protein to develop a sort of protective film on the surface of artificially synthesized PCs. The film possesses positive mechanical properties that make the PCs friction and impact resistant. In addition, favorable resistance to water and CO2 could prevent PCs from being destroyed by pollutants. Consequently, PCs with protective film are well preserved when subjected to external factors (such as friction) and the optical properties of the PCs are successfully maintained, that may significantly promote the utilization of PCs in optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Physical Review Letters, 1987, 58, 2059–2062.

    Article  Google Scholar 

  2. John S. Strong localization of photons in certain disordered dielectric superlattices. Physical Review Letters, 1987, 58, 2486–2489.

    Article  Google Scholar 

  3. Fan S H, Villeneuve P R, Joannopoulos J D, Schubert E F. High extraction efficiency of spontaneous emission from slabs of photonic crystals. Physical Review Letters, 1997, 78, 3294–3295.

    Article  Google Scholar 

  4. Weily A R, Esselle K P, Sanders B C. Photonic crystal horn and array antennas. Physical Review E, 2003, 68, 016609.

    Article  Google Scholar 

  5. Horii Y, Tsutsumi M. Harmonic control by photonic bandgap on microstrip patch antenna. IEEE Microwave and Guided Wave Letters, 1999, 9, 13–15.

    Article  Google Scholar 

  6. Weily A R, Esselle K P, Sanders B C. Layer-by-layer photonic crystal horn antenna. Physical Review E, 2004, 70, 037602.

    Article  Google Scholar 

  7. Gralak B, Enoch S, Tayeb G. Anomalous refractive properties of photonic crystals. Journal of the Optical Society of America A–Optics Image Science and Vision, 2000, 17, 1012–1020.

    Article  Google Scholar 

  8. Foteinopoulou S, Soukoulis C M. Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects. Physical Review B, 2005, 72, 165112.

    Article  Google Scholar 

  9. Yang S, Xu T, Ruda H. Numerical study of anomalous refraction in photonic crystals. Physical Review B, 2005, 72, 075128.

    Article  Google Scholar 

  10. Notomi M. Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap. Physical Review B, 2000, 62, 10696–10705.

    Article  Google Scholar 

  11. Cubukcu E, Aydin K, Ozbay E, Foteinopoulou S, Soukoulis C M. Electromagnetic waves: Negative refraction by photonic crystals. Nature, 2003, 423, 604–605.

    Article  Google Scholar 

  12. Ao X Y, He S L. Three-dimensional photonic crystal of negative refraction achieved by interference lithography. Optics Letters, 2004, 29, 2542–2544.

    Article  Google Scholar 

  13. Kosaka H, Kawashima T, Tomita A, Notomi M, Tamamura T, Sato T, Kawakami S. Self-collimating phenomena in photonic crystals. Applied Physics Letters, 1999, 74, 1212–1214.

    Article  Google Scholar 

  14. Matthews A F, Morrison S K, Kivshar Y S. Self-collimation and beam splitting in low-index photonic crystals. Optics Communications, 2007, 279, 313–319.

    Article  Google Scholar 

  15. Kosaka H, Kawashima T, Tomita A, Tamamura T, Sato T, Kawakami S. Superprism phenomena in photonic crystals. Physical Review B, 1999, 58, 10096–10099.

    Article  Google Scholar 

  16. Yang S Y, Wu J Y, Horng H E, Hong C Y, Yang H C. Direct observations for the superprism effect in photonic crystals utilizing negative refraction. Journal of Applied Physics, 2008, 103, 053110.

    Article  Google Scholar 

  17. Zhou X, Pfeiffer M, Blochwitz J, Werner A, Nollau A, Fritz T, Leo K. Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer. Applied Physics Letters, 2001, 78, 410–412.

    Article  Google Scholar 

  18. Knight J C, Birks T A, Russell P St J, Atkin D M. All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 1996, 21, 484–485.

    Google Scholar 

  19. Whitesides G M, Mathias J P, Seto C T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science, 1991, 254, 1312–1319.

    Article  Google Scholar 

  20. Jiang P, Mcfarland M J. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating. Journal of the American Chemical Society, 2004, 126, 13778–13786.

    Article  Google Scholar 

  21. Ding T, Song K, Clays K, Tung C H. Fabrication of 3D photonic crystals of ellipsoids: Convective self-assembly in magnetic field. Advanced Materials, 2009, 21, 1936–1940.

    Article  Google Scholar 

  22. Mayoral R, Requena J, Moya J S, Lopez C, Cintas A, Miguez H, Meseguer F, Vazquez L, Holgado M, Blanco A. 3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure. Advanced Materials, 1997, 9, 257–260.

    Article  Google Scholar 

  23. Míguez H, Tetreault N, Hatton B, Yang S M, Perovic D, Ozin G A. Mechanical stability enhancement by pore size and connectivity control in colloidal crystals by layer-bylayer growth of oxide. Chemical Communications, 2002, 22, 2736–2737.

    Article  Google Scholar 

  24. Wang J X, Wen Y Q, Ge H L, Sun Z W, Zheng Y M, Song Y L, Jiang L. Simple fabrication of full color colloidal crystal films with tough mechanical strength. Macromolecular Chemistry and Physics, 2006, 207, 596–604.

    Article  Google Scholar 

  25. Sun C, Yao Y H, Gu Z Z. Fabrication of elastic colloidal crystal films from pure soft spheres. Colloids and Surfaces A, 2012, 402, 102–107.

    Article  Google Scholar 

  26. Duan L L, You B, Wu L M, Chen M. Facile fabrication of mechanochromic-responsive colloidal crystal films. Journal of Colloid and Interface Science, 2011, 353, 163–168.

    Article  Google Scholar 

  27. Tang B T, Zheng X X, Lin T, Zhang S F. Hydrophobic structural color films with bright color and tunable stop-bands. Dyes and Pigments, 2014, 104, 146–150.

    Article  Google Scholar 

  28. Wang Q, Li J X, Song Y, Wang X K. Facile synthesis of high-quality plasma-reduced graphene oxide with ultrahigh 4,4′-dichlorobiphenyl desorption capacity. Chemistry–An Asian Journal, 2013, 8, 225–231.

    Article  Google Scholar 

  29. Teyssier J, Saenko S V, Marel D V D, Milinkovitch M C. Photonic crystals cause active colour change in chameleons. Nature Communications, 2015, 6, 6368.

    Article  Google Scholar 

  30. Alibardi L, Toni M. Cytochemical, biochemical and molecular aspects of the process of keratinization in the epidermis of reptilian scales. Progress in Histochemistry and Cytochemistry, 2006, 40, 73–134.

    Article  Google Scholar 

  31. Fang J F, Xuan Y M, Li Q. Preparation of polystyrene spheres in different particle sizes and assembly of the PS colloidal crystals. Science China Technological Sciences, 2010, 53, 3088–3093.

    Article  Google Scholar 

  32. Meng X D, Al-Salman R, Zhao J P, Borissenko N, Li Y, Endres F. Electrodeposition of 3D ordered macroporous germanium from ionic liquids: A feasible method to make photonic crystals with a high dielectric constant. Angewandte Chemie-Intrnational Edition, 2009, 48, 2703–2707.

    Article  Google Scholar 

  33. Zhang H J, Chi Y J, Sun B, Wang X B, Xia N. Preparation of soy protein isolate-based food packaging films. Food Science, 2010, 4, 280–285.

    Google Scholar 

  34. Van der Leeden M C, Rutten A A C M, Frens G. How to develop globular proteins into adhesives. Journal of Biotechnology, 2000, 79, 211–221.

    Article  Google Scholar 

  35. Lieberman E R, Gilbert S G. Gas permeation of collagen films as affected by cross-linkage, moisture, and plasticizer content. Journal of Polymer Science, 1973, 41, 33–43.

    Google Scholar 

  36. Kristo E, Biliaderis C G, Zampraka A. Water vapor barrier and tensile properties of composite caseinat-pullulan films: Biopolymer composition effects and impact of beeswax lamination. Food Chemistry, 2007, 101, 753–764.

    Article  Google Scholar 

  37. Mchugh T H, Aujard J F, Krochta J M. Plasticized whey protein edible films: Water vapor permeability properties. Journal of Food Science, 1994, 59, 416–419.

    Article  Google Scholar 

  38. Fang Y, Tung M A, Britt I J, Yada S, Dalgleigh D G. Tensile and barrier properties of edible films made from whey protein. Journal of Food Science, 2002, 67, 188–193.

    Article  Google Scholar 

  39. Gu L H, Coulombe P A. Keratin function in skin epithelia: A broadening palette with surprising shades. Current Opinion in Cell Biology, 2007, 19, 13–23.

    Article  Google Scholar 

  40. Floris R, Bodnár L, Weinbreck F, Alting A C. Dynamic rearrangement of disulfide bridges influences solubility of whey protein coatings. International Dairy Journal, 2008, 18, 566–573.

    Article  Google Scholar 

  41. Pierro P Di, Chico B, Villalonga R, Mariniello L, Damiao A E, Masi P, Porta R. Chitosan-whey protein edible films produced in the absence or presence of transglutaminase: Analysis of their mechanical and barrier properties. Biomacromolecules, 2006, 7, 744–749.

    Article  Google Scholar 

  42. Mahmoud R, Savello P A. Mechanical properties of and water vapor transferability through whey protein film. Journal of Dairy Science, 1992, 75, 942–946.

    Article  Google Scholar 

Download references

Acknowledgment

We appreciate National Natural Science Foundation of China (Nos. 51572058 and 51502057), National Key Research & Development Program (Nos. 2016YFB0303903 and 2016YFE0201600), the International Science & Technology Cooperation Program of China (Nos. 2013DFR10630 and 2015DFE52770), and Foundation of Equipment Development Department (No. 6220914010901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xu, H., Pan, L. et al. A Protective Film Produced by Whey Protein for Photonic Crystals: Inspired by the Epidermis Structure of Chameleon. J Bionic Eng 15, 713–721 (2018). https://doi.org/10.1007/s42235-018-0059-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-018-0059-z

Keywords

Navigation