Skip to main content

Advertisement

Log in

Exopolysaccharides from marine bacteria: production, recovery and applications

  • Review
  • Published:
Environmental Sustainability Aims and scope Submit manuscript

Abstract

Ocean represents an unusual diversity of life. The largest proportion of microbial diversity has been found in the oceanic and terrestrial subsurface respectively. Marine habitats are inhabited by several microbial populations adapted to these ecosystems. Among these populations, bacteria are one of the important and dominant inhabitants of such environments. Marine bacteria themselves or their products such as enzymes, exopolymers, pigments, antimicrobial compounds, and biosurfactants represent a wide range of applications in food, textile, and pharmaceutical industries as well as in many environmental processes. This review aims to present the exopolysaccharide production from marine bacteria and its possible biosynthesis along with recovery of these polymers using various methods. Finally, the applications of these polymers, particularly in the field of bioremediation, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abbas SH, Ismail IM, Mostafa TM, Sulaymon AH (2014) Biosorption of heavy metals: a review. J Chem Sci Technol 3(4):74–102

    Google Scholar 

  • Abreu NA, Taga ME (2016) Decoding molecular interactions in microbial communities. FEMS Microbiol Rev 40:648–663

    CAS  Google Scholar 

  • Acosta MP, Valdman E, Leite SG, Battaglini F, Ruzal SM (2005) Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide. World J Microbiol Biotechnol 21(6–7):1157–1163

    Google Scholar 

  • Ahmed Z, Wang Y, Anjum N, Ahmad A, Khan ST (2013) Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir—Part II. Food Hydrocoll 30(1):343–350

    CAS  Google Scholar 

  • Arena A (2004) Exopolysaccharides from marine thermophilic bacilli induce a Th1 cytokine profile in human PBMC. Clin Microbiol Infect 10:366

    Google Scholar 

  • Arena A, Gugliandolo C, Stassi G, Pavone B, Iannello D, Bisignano G, Maugeri TL (2009) An exopolysaccharide produced by Geobacillus thermodenitrificans strain B3-72: antiviral activity on immunocompetent cells. Immunol Lett 123(2):132–137

    CAS  Google Scholar 

  • Arias S, Del Moral A, Ferrer MR, Tallon R, Quesada E, Bejar V (2003) Mauran, an exopolysaccharide produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties for biotechnology. Extremophiles 7(4):319–326

    CAS  Google Scholar 

  • Asker MS, El Sayed OH, Mahmoud MG, Yahya SM, Mohamed SS, Selim MS, El Awady MS, Abdelnasser SM, Elsoud MM (2018) Production of exopolysaccharides from novel marine bacteria and anticancer activity against hepatocellular carcinoma cells (HepG2). Bull Natl Res Cent 42(1):30

    Google Scholar 

  • Ates O (2015) Systems biology of microbial exopolysaccharides production. Front Bioeng Biotechnol 3:200. https://doi.org/10.3389/fbioe.2015.00200

    Article  Google Scholar 

  • Aullybux AA, Puchooa D, Bahorun T, Jeewon R (2019) Phylogenetics and antibacterial properties of exopolysaccharides from marine bacteria isolated from Mauritius seawater. Ann Microbiol 69:957–972. doi:https://doi.org/10.1007/s13213-019-01487-2

    Article  Google Scholar 

  • Bacosa HP, Kamalanathan M, Chiu MH, Tsai SM, Sun L, Labonté JM, Schwehr KA, Hala D, Santschi PH, Chin WC, Quigg A (2018) Extracellular polymeric substances (EPS) producing and oil degrading bacteria isolated from the northern Gulf of Mexico. PloS One 13(12):e0208406

    CAS  Google Scholar 

  • Bajaj IB, Survase SA, Saudagar PS, Singhal RS (2007) Gellan gum: fermentative production, downstream processing and applications. Food Technol Biotechnol 45(4):341

    CAS  Google Scholar 

  • Béjar V, Llamas I, Calvo C, Quesada E (1998) Characterization of exopolysaccharides produced by 19 halophilic strains of the species Halomonas eurihalina. J Biotechnol 61(2):135–141

    Google Scholar 

  • Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food-chain. Environ Int 32(2):191–198

    CAS  Google Scholar 

  • Boels IC, van Kranenburg R, Hugenholtz J, Kleerebezem M, de Vos WM (2001) Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. Int Dairy J 11(9):723–732

    CAS  Google Scholar 

  • Bouchotroch S, Quesada E, Izquierdo I, Rodriguez M, Béjar V (2000) Bacterial exopolysaccharides produced by newly discovered bacteria belonging to the genus Halomonas, isolated from hypersaline habitats in Morocco. J Ind Microbiol Biotechnol 24(6):374–378

    CAS  Google Scholar 

  • Bouchotroch S, Quesada E, del Moral A, Llamas I, Béjar V (2001) Halomonas maura sp. nov., a novel moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51(5):1625–1632

    CAS  Google Scholar 

  • Bozzi L, Milas M, Rinaudo M (1996) Characterization and solution properties of a new exopolysaccharide excreted by the bacterium Alteromonas sp. strain 1644. Int J Biol Macromol 18:9–17

    CAS  Google Scholar 

  • Bramhachari PV, Dubey SK (2006) Isolation and characterization of exopolysaccharide produced by Vibrio harveyi strain VB23. Lett Appl Microb 43(5):571–577

    CAS  Google Scholar 

  • Bramhachari PV, Kavi Kishor PB, Ramadevi R, Kumar R, Rao BR, Dubeyj SK (2007) Isolation and characterization of mucous exopolysaccharide (EPS) produced by Vibrio furnissii strain VB0S3. J Microbiol Biotechnol 17:44

    CAS  Google Scholar 

  • Carillo S, Casillo A, Pieretti G, Parrilli E, Sannino F, Bayer-Giraldi M, Cosconati S, Novellino E, Ewert M, Deming JW, Lanzetta R (2015) A unique capsular polysaccharide structure from the psychrophilic marine bacterium Colwellia psychrerythraea 34H that mimics antifreeze (glyco) proteins. J Am Chem Soc 137(1):179–189

    CAS  Google Scholar 

  • Caruso C, Rizzo C, Mangano S, Poli A, Di Donato P, Nicolaus B, Di Marco G, Michaud L, Giudice AL (2018) Extracellular polymeric substances with metal adsorption capacity produced by Pseudoalteromonas sp. MER144 from Antarctic seawater. Environ Sci Pollut Res 25(5):4667–4677. doi:https://doi.org/10.1007/s11356-017-0851-z

    Article  CAS  Google Scholar 

  • Caruso C, Rizzo C, Mangano S, Poli A, Di Donato P, Nicolaus B, Finore I, Di Marco G, Michaud L, Giudice AL (2019) Isolation, characterization and optimization of EPSs produced by a cold-adapted Marinobacter isolate from Antarctic seawater. Antarct Sci 31(2):69–79

    Google Scholar 

  • Casillo A, Lanzetta R, Parrilli M, Corsaro M (2018) Exopolysaccharides from marine and marine extremophilic bacteria: structures, properties, ecological roles and applications. Mar Drugs 16(2):69

    Google Scholar 

  • Castillo NA, Valdez AL, Fariña JI (2015) Microbial production of scleroglucan and downstream processing. Front Microbiol 6:1106

    Google Scholar 

  • Chi Z, Fang Y (2005) Exopolysaccharides from marine bacteria. J Ocean U China (English Edition) 4(1):67–74

    CAS  Google Scholar 

  • Choi SB, Yun YS (2006) Biosorption of cadmium by various types of dried sludge: an equilibrium study and investigation of mechanisms. J Hazard Mater 138(2):378–383

    CAS  Google Scholar 

  • Chowdhury SR, Manna S, Saha P, Basak RK, Sen R, Roy D, Adhikari B (2011) Composition analysis and material characterization of an emulsifying extracellular polysaccharide (EPS) produced by Bacillus megaterium RB-05: a hydrodynamic sediment‐attached isolate of freshwater origin. J Appl Microbiol 111(6):1381–1393

    CAS  Google Scholar 

  • Cuthbertson L, Kos V, Whitfield C (2010) ABC transporters involved in export of cell surface glycoconjugates. Microbiol Mol Biol Rev 74(3):341–362. https://doi.org/10.1128/MMBR.00009-10

    Article  CAS  Google Scholar 

  • D’Abzac P, Bordas F, Van Hullebusch E, Lens PN, Guibaud G (2010) Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: comparison of chemical and physical extraction protocols. Appl Microbiol Biotechnol 85(5):1589–1599

    Google Scholar 

  • Dave SR, Vaishnav AM, Upadhyay KH, Tipre DR (2016) Microbial exopolysaccharide—an inevitable product for living beings and environment. J Bacteriol Mycol 2(4):00034

    Google Scholar 

  • de Morais MG, Stillings C, Dersch R, Rudisile M, Pranke P, Costa JAV, Wendorff J (2010) Preparation of nanofibers containing the microalga Spirulina (Arthrospira). Bioresour Technol 101(8):2872–2876

    Google Scholar 

  • De Vuyst L, De Vin F (2007) Exopolysaccharides from lactic acid bacteria. In: Kamerling JP (ed) Comprehensive glycoscience: from chemistry to systems biology. Elsevier, Oxford, pp 477–519

    Google Scholar 

  • Desbrieres J, Peptu CA, Savin CL, Popa M (2018) Chemically modified polysaccharides with applications in nanomedicine. In: Popa V, Wolf I (ed) Biomass as renewable raw material to obtain bioproducts of high-tech value. Elseveir, pp 351–399

  • Deschatre M, Ghillebaert F, Guezennec J, Simon-Colin C (2015) Study of biosorption of copper and silver by marine bacterial exopolysaccharides. WIT Trans Ecol Environ 196:549–559

    CAS  Google Scholar 

  • Dignac MF, Urbain V, Rybacki D, Bruchet A, Snidaro D, Scribe P (1998) Chemical description of extracellular polymers: implication on activated sludge floc structure. Water Sci Technol 38(8–9):45–53

    CAS  Google Scholar 

  • Dong S, Yang J, Zhang XY, Shi M, Song XY, Chen XL, Zhang YZ (2012) Cultivable alginate lyase-excreting bacteria associated with the arctic brown alga Laminaria. Mar Drugs 10:2481–2491

    CAS  Google Scholar 

  • Donnarumma G, Molinaro A, Cimini D, De Castro C, Valli V, De Gregorio V, De Rosa M, Schiraldi C (2014) Lactobacillus crispatus L1: high cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens. BMC Microbiol 14(1):137

    Google Scholar 

  • Enikeev R (2012) Development of a new method for determination of exopolysaccharide quantity in fermented milk products and its application in technology of kefir production. Food Chem 134(4):2437–2441

    CAS  Google Scholar 

  • Fallourd MJ, Viscione L (2009) Ingredient selection for stabilisation and texture optimisation of functional beverages and the inclusion of dietary fibre. In: Paquin P (ed) Functional and speciality beverage technology. Woodhead Publishing Limited and CRC Press LLC, pp 3–38

  • Fialho AM, Moreira LM, Granja AT, Popescu AO, Hoffmann K, Sá-Correia I (2008) Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 79(6):889

    CAS  Google Scholar 

  • Fontana C, Li S, Yang Z, Widmalm G (2015) Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER. Carbohydr Res 402:87–94

    CAS  Google Scholar 

  • Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29(8):388–398

    CAS  Google Scholar 

  • Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30(8):1749–1758

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiol 156(3):609–643

    CAS  Google Scholar 

  • Galindo E, Albiter V (1996) High-yield recovery of xanthan by precipitation with isopropyl alcohol in a stirred tank. Biotechnol Prog 12:540–547

    CAS  Google Scholar 

  • Garcia-Ochoa F, Casas JA, Mohedano AF (1993) Precipitation of xanthan gum. Sep Sci Technol 28:1303ą13

    Google Scholar 

  • Górska-Frączek S, Sandström C, Kenne L, Paściak M, Brzozowska E, Strus M, Heczko P, Gamian A (2013) The structure and immunoreactivity of exopolysaccharide isolated from Lactobacillus johnsonii strain 151. Carbohydr Res 378:148–153

    Google Scholar 

  • Gupta P, Diwan B (2017) Bacterial Exopolysaccharide mediated heavy metal removal: a review on biosynthesis, mechanism and remediation strategies. Biotechnol Rep 13:58–71

    Google Scholar 

  • Gutierrez T, Shimmield T, Haidon C, Black K, Green DH (2008) Emulsifying and metal ion binding activity of a glycoprotein exopolymer produced by Pseudoalteromonas sp. strain TG12. Appl Environ Microbiol 74(15):4867–4876

    CAS  Google Scholar 

  • Gutierrez T, Biller DV, Shimmield T, Green DH (2012) Metal binding properties of the EPS produced by Halomonas sp. TG39 and its potential in enhancing trace element bioavailability to eukaryotic phytoplankton. Biometals 25(6):1185–1194

    CAS  Google Scholar 

  • Islam ST, Lam JS (2014) Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can J Microbiol 60(11):697–716

    CAS  Google Scholar 

  • Ismail B, Nampoothiri KM (2014) Molecular characterization of an exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510 and its efficacy to improve the texture of starchy food. J Food Sci Technol 51(12):4012–4018

    CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2004) Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobacter cloaceae. Mar Pollut Bull 49(11–12):974–977

    CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 50(3):340–343

    CAS  Google Scholar 

  • Janczarek M (2015) Exopolysaccharide production in rhizobia is regulated by environmental factors. In: de Bruijn FJ (ed) Biological nitrogen fixation. Willey, New York, pp 365–380

    Google Scholar 

  • Jekins RO, Hall JF (1997) Production and applications of microbial exopolysaccharides. In: Currel B, Mieras Van Dem RC (eds) Biotechnological innovations in chemical synthesis. Butterworth, Heinemann, Oxford, pp 193–230

    Google Scholar 

  • Jiao Y, Cody GD, Harding AK, Wilmes P, Schrenk M, Wheeler KE, Banfield JF, Thelen MP (2010) Characterization of extracellular polymeric substances from acidophilic microbial biofilms. Appl Environ Microbiol 76(9):2916–2922

    CAS  Google Scholar 

  • Kambourova M, Oner ET, Poli A (2015) Exopolysaccharides from prokaryotic microorganisms—promising sources for white biotechnology processes. In: Pandey A, Höfer R, Taherzadeh M, Madhavan Nampoothiri K, Larroche C (eds) Industrial biorefineries and white biotechnology. Elsevier, pp 523–554

  • Kennedy JF, Bradshaw IJ (1984) Production, properties and applications of xanthan. Prog Ind Microbiol 19:319–371

    CAS  Google Scholar 

  • Kim IH, Choi JH, Joo JO, Kim YK, Choi JW, Oh BK (2015) Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater. J Microbiol Biotechnol 25(9):1542–1546

    CAS  Google Scholar 

  • Kreyenschulte D, Krull R, Margaritis A (2014) Recent advances in microbial biopolymer production and purification. Crit Rev Biotechnol 34(1):1–5

    CAS  Google Scholar 

  • Kumar CG, Joo HS, Choi JW, Koo YM, Chang CS (2004) Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme Micro Tech 34(7):673–681

    CAS  Google Scholar 

  • Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides: A perception. J Basic Microbiol 47:103–117

    CAS  Google Scholar 

  • Lakzian A, Berenji AR, Karimi E, Razavi S (2008) Adsorption capability of lead, nickel and zinc by exopolysaccharide and dried cell of Ensifer meliloti. Asian J Chem 20(8):6075

    CAS  Google Scholar 

  • Laroche C, Michaud C (2010) Microbial polysaccharides. In: Larroche C, Pandey A, Dussap CG (eds) Comprehensive food fermentation and biotechnology, Chapter 8. Asiatech Publisher, Inc., New Delhi

    Google Scholar 

  • Laurienzo P (2010) Marine polysaccharides in pharmaceutical applications: an overview. Mar Drugs 8(9):2435–2465

    CAS  Google Scholar 

  • Le Costaouec T, Cérantola S, Ropartz D, Ratiskol J, Sinquin C, Colliec-Jouault S, Boisset C (2012) Structural data on a bacterial exopolysaccharide produced by a deep-sea Alteromonas macleodii strain. Carbohyd Polym 90(1):49–59

    Google Scholar 

  • Lee HK, Chun J, Moon EY, Ko SH, Lee DS, Lee HS, Bae KS (2001) Hahella chejuensis gen. nov., sp. nov., an extracellular-polysaccharide-producing marine bacterium. Int J Syst Evol Microbiol 51(2):661–666

    CAS  Google Scholar 

  • Lelchat F, Cérantola S, Brandily C, Colliec-Jouault S, Baudoux AC, Ojima T, Boisset C (2015) The marine bacteria Cobetia marina DSMZ 4741 synthesizes an unexpected K-antigen-like exopolysaccharide. Carbohydr Polym 124:347–356

    CAS  Google Scholar 

  • Leroy F, De Vuyst L (2016) Advances in production and simplified methods for recovery and quantification of exopolysaccharides for applications in food and health. J Dairy Sci 99(4):3229–3238

    CAS  Google Scholar 

  • Li WW, Zhou WZ, Zhang YZ, Wang J, Zhu XB (2008) Flocculation behavior and mechanism of an exopolysaccharide from the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Bioresour Technol 99(15):6893–6899

    CAS  Google Scholar 

  • Liang TW, Wang SL (2015) Recent advances in exopolysaccharides from Paenibacillus spp: production, isolation, structure, and bioactivities. Mar drugs 13(4):1847–1863

    CAS  Google Scholar 

  • Lim DJ, Kim JD, Kim MY, Yoo SH, Kong JY (2007) Physicochemical properties of the exopolysaccharides produced by marine bacterium Zoogloea sp. KCCM10036. J Microbiol Biotechnol 17(6):979–984

    CAS  Google Scholar 

  • Llamas I, Mata JA, Tallon R, Bressollier P, Urdaci MC, Quesada E, Béjar V (2010) Characterization of the exopolysaccharide produced by Salipiger mucosus A3T, a halophilic species belonging to the Alphaproteobacteria, isolated on the Spanish mediterranean seaboard. Mar drugs 8(8):2240–51

    CAS  Google Scholar 

  • Lo YM, Yang ST, Min DB (1997) Ultrafiltration broth: process and economic analyses. J Food Eng 31:219–236

    Google Scholar 

  • Loaec M, Olier R, Guezennec J (1998) Chelating properties of bacterial exopolysaccharides from deep-sea hydrothermal vents. Carbohydr Polym 35(1–2):65–70

    CAS  Google Scholar 

  • Lorenz MG, Aardema BW, Wackernagel W (1988) Highly efficient genetic transformation of Bacillus subtilis attached to sand grains. Microbiol 134(1):107–112

    CAS  Google Scholar 

  • Marcial GJ. Messing B, Menchicchi FM, Goycoolea G, Faller G, Font de Valdez G, Hensel A (2013) Effects of polysaccharide isolated from Streptococcus thermophilus CRL1190 on human gastric epithelial cells. Int J Biol Macromol 62:217–224

    CAS  Google Scholar 

  • Margaritis A, Pace GW (1985) Microbial polysaccharides. In: Blanch HW, Drew S, Wang DI (eds) Comprehensive biotechnology. Pergamon Press, Oxford, pp 1005–1044

    Google Scholar 

  • Martínez-Cánovas MJ, Quesada E, Llamas I, Bejar V (2004) Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54(3):733–737

    Google Scholar 

  • Marx JG, Carpenter SD, Deming JW (2009) Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions. Can J Microbiol 55:63–72

    CAS  Google Scholar 

  • Mata JA, Béjar V, Llamas I, Arias S, Bressollier P, Tallon R, Urdaci MC, Quesada E (2006) Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Res Microbiol 157(9):827–835

    CAS  Google Scholar 

  • Mata JA, Béjar V, Bressollier P, Tallon R, Urdaci MC, Quesada E, Llamas I (2008) Characterization of exopolysaccharides produced by three moderately halophilic bacteria belonging to the family Alteromonadaceae. J Appl Microbiol 105(2):521–528

    CAS  Google Scholar 

  • Matsuda M, Yamori T, Naitoh M, Okutani K (2003) Structural revision of sulfated polysaccharide B-1 isolated from a marine Pseudomonas species and its cytotoxic activity against human cancer cell lines. Mar Biotechnol (NY) 5:13–19

    CAS  Google Scholar 

  • Mende S, Peter M, Bartels K, Rohm H, Jaros D (2013) Addition of purified exopolysaccharide isolates from S. thermophilus to milk and their impact on the rheology of acid gels. Food Hydrocoll 32(1):178–185

    CAS  Google Scholar 

  • Mohamed SS, Amer SK, Selim MS, Rifaat HM (2018) Characterization and applications of exopolysaccharide produced by marine Bacillus altitudinis MSH2014 from Ras Mohamed, Sinai, Egypt. Egypt J Basic Appl Sci 5(3):204–209

    Google Scholar 

  • Mohapatra RK, Parhi PK, Pandey S, Bindhani BK, Thatoi H, Panda CR (2019) Active and passive biosorption of Pb (II) using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: kinetics and isotherm studies. J Environ Manag 247:121–134

    CAS  Google Scholar 

  • Morin A (1998) Screening of polysaccharide-producing microorganisms, factors influencing the production and recovery of microbial polysaccharides. In: Dumitriu S (ed) Polysaccharides---structural diversity and functional versatility. Marcel Dekker Inc. Publication, New York, pp 275–296

    Google Scholar 

  • Muralidharan J, Jayachandran S (2003) Physicochemical analyses of the exopolysaccharides produced by a marine biofouling bacterium, Vibrio alginolyticus. Process Biochem 38(6):841–847

    CAS  Google Scholar 

  • Neu TR, Poralla K (1990) Emulsifying agents from bacteria isolated during screening for cells with hydrophobic surfaces. Appl Microbiol Biotechnol 32:521–525

    CAS  Google Scholar 

  • Notararigo S, Nácher-Vázquez M, Ibarburu I, Werning ML, de Palencia PF, Dueñas MT, Aznar R, López P, Prieto A (2013) Comparative analysis of production and purification of homo-and hetero-polysaccharides produced by lactic acid bacteria. Carbohydr Polym 93(1):57–64

    CAS  Google Scholar 

  • Nwodo UU, Green E, Okoh AI (2012) Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 13(11):14002–14015

    CAS  Google Scholar 

  • Onesti MG, Fioramonti P, Carella S, Fino P, Sorvillo V, Scuderi N (2013) A new association between hyaluronic acid and collagenase in wound repair: an open study. Eur Rev Med Pharmacol Sci 17(2):210–216

    CAS  Google Scholar 

  • Otero A, Vincenzini M (2003) Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J Biotechnol 102(2):143–152

    CAS  Google Scholar 

  • Ozdemir G, Ceyhan N, Manav E (2005) Utilization of an exopolysaccharide produced by Chryseomonas luteola TEM05 in alginate beads for adsorption of cadmium and cobalt ions. Bioresour Technol 96(15):1677–1682

    CAS  Google Scholar 

  • Pace GW, Righeloto RC (1981) Production of extracellular microbial polysaccharides. Adv Biochem Eng 15:41–70

    Google Scholar 

  • Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15(1):86–102

    CAS  Google Scholar 

  • Park JH, Ahn HJ, Kim SG, Chung CH (2013) Dextran-like exopolysaccharide-producing Leuconostoc and Weissella from Kimchi and its ingredients. Food Sci Biotechnol 22(4):1047–1053

    CAS  Google Scholar 

  • Parkar D, Jadhav R, Pimpliskar M (2017) Marine bacterial extracellular polysaccharides: A review. J Coast Life Med 5(1):29–35

    CAS  Google Scholar 

  • Patel AK, Michaud P, Singhania RR, Soccol CR, Pandey A (2010) Polysaccharides from probiotics: new developments as food additives. Food Technol Biotechnol 48(4):451–463

    CAS  Google Scholar 

  • Poli A, Schiano Moriello V, Esposito E, Lama L, Gambacorta A, Nicolaus B (2004) Exopolysaccharide production by a new Halomonas strain CRSS isolated from saline lake Cape Russell in Antarctica growing on complex and defined media. Biotechnol Lett 26:1635–1638

    CAS  Google Scholar 

  • Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar drugs 8(6):1779–1802

    CAS  Google Scholar 

  • Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea 2011:1–13

  • Prameela K, Mohan CM, Ramakrishna C (2018) Biopolymers for food design: consumer-friendly natural ingredients. In: Grumezescu AM, Holban AM (eds) Biopolymers for food design. Academic Press, UK pp 1–32

  • Qin G, Zhu L, Chen X, Wang PG, Zhang Y (2007) Structural characterization and ecological roles of a novel exopolysaccharide from the deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913. Microbiol 153:1566–1572

    CAS  Google Scholar 

  • Quesada E, Béjar V, Calvo C (1993) Exopolysaccharide production by Volcaniella eurihalina. Experientia 49(12):1037–1041

    CAS  Google Scholar 

  • Quintero EJ, Langille SE, Weiner RM (2001) The polar polysaccharide capsule of Hyphomonas adhaerens MHS-3 has a strong affinity for gold. J Ind Microbiol Biotechnol 27(1):1–4

    CAS  Google Scholar 

  • Rasulov BA, Yili A, Aisa HA (2013) Biosorption of metal ions by exopolysaccharide produced by Azotobacter chroococcum XU1. J Environ Prot 4(09):989

    Google Scholar 

  • Rehm BH (2010) Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol 8(8):578–592

    CAS  Google Scholar 

  • Rimada PS, Abraham AG (2003) Comparative study of different methodologies to determine the exopolysaccharide produced by kefir grains in milk and whey. Le Lait 83(1):79–87

    CAS  Google Scholar 

  • Rodríguez-Tirado V, Green-Ruiz C, Gómez-Gil B (2012) Cu and Pb biosorption on Bacillus thioparans strain U3 in aqueous solution: kinetic and equilibrium studies. Chem Eng J 181:352–359

    Google Scholar 

  • Romano I, Poli A, Finore I, Huertas FJ, Gambacorta A, Pelliccione S, Nicolaus B (2007) Haloterrigena hispanica sp. nov., an extremely halophilic archaeon from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 57(7):1499–1503

    Google Scholar 

  • Ruas-Madiedo P, Hugenholtz J, Zoon P (2002) An overview of the functionality of exopolysaccharides produced by lactic acid bacteria. Int Dairy J 12(2–3):163–171

    CAS  Google Scholar 

  • Ruas-Madiedo P, de los Reyes-Gavilán CG (2005) Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J Dairy Sci 88:843–856

    CAS  Google Scholar 

  • Sahana TG, Rekha PD (2019) A bioactive exopolysaccharide from marine bacteria Alteromonas sp. PRIM-28 and its role in cell proliferation and wound healing in vitro. Int J Biol Macromol 131:10–18

    CAS  Google Scholar 

  • Saikia U, Bharanidharan R, Vendhan E, Yadav S, Siva Shankar S (2013) A brief review on the science, mechanism and environmental constraints of microbial enhanced oil recovery (MEOR). Int J Chem Technol Res 5(3):1205–1212

    CAS  Google Scholar 

  • Salehizadeh H, Shojaosadati SA (2003) Removal of metal ions from aqueous solution by polysaccharide produced from Bacillus firmus. Water Res 37(17):4231–4235

    CAS  Google Scholar 

  • Sara Pereira R, Mota C, Vieira J, Vieira P (2015) Phylum-wide analysis of genes/proteins related to the last steps of assembly and export of extracellular polymeric substances (EPS) in cyanobacteria. Sci Rep 5:14835

    Google Scholar 

  • Saravanan P, Jayachandran S (2008) Preliminary characterization of exopolysaccharides produced by a marine biofilm-forming bacterium Pseudoalteromonas ruthenica (SBT 033). Lett Appl Microbiol 46(1):1–6

    CAS  Google Scholar 

  • Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496

    Google Scholar 

  • Shah V, Ray A, Garg N, Madamwar D (2000) Characterization of the extracellular polysaccharide produced by a marine cyanobacterium, Cyanothece sp. ATCC 51142, and its exploitation toward metal removal from solutions. Curr Microbiol 40(4):274–278

    CAS  Google Scholar 

  • Shang N, Xu R, Li P (2013) Structure characterization of an exopolysaccharide produced by Bifidobacterium animalis RH. Carbohydr Polym 91(1):128–134

    CAS  Google Scholar 

  • Shao LI, Wu Z, Zhang H, Chen W, Ai L, Guo B (2014) Partial characterization and immunostimulatory activity of exopolysaccharides from Lactobacillus rhamnosus KF5. Carbohydr Polym 107:51–56

    CAS  Google Scholar 

  • Shukla PJ, Dave BP (2018) Screening and molecular identification of potential exopolysaccharides (EPS) producing marine bacteria from the Bhavnagar coast, Gujarat. Int J Pharm Sci Res 9(7):2973–2981

    CAS  Google Scholar 

  • Smith IH, Pace GW (1982) Recovery of microbial polysaccharides. J Chem Technol Biotechnol 32(1):119–129

    CAS  Google Scholar 

  • Stredansky M, Conti E, Bertocchi C, Navarini L, Matulova M, Zanetti F (1999) Fed-batch production and simple isolation of succinoglycan from Agrobacterium tumefaciens. Biotechnolo tech 13(1):7–10

    CAS  Google Scholar 

  • Sultan S, Mubashar K, Faisal M (2012) Uptake of toxic Cr (VI) by biomass of exopolysaccharides producing bacterial strains. Afr J Microbiol Res 6(13):3329–3336

    CAS  Google Scholar 

  • Sun W, Griffiths MW (2000) Survival of Bifidobacteria in yogurt and simulated gastric juice following immobilization in gellan–xanthan beads. Int J Food Microbiol 61(1):17–25

    CAS  Google Scholar 

  • Sun ML, Zhao F, Shi M, Zhang XY, Zhou BC, Zhang YZ, Chen XL (2015) Characterization and biotechnological potential analysis of a new exopolysaccharide from the Arctic marine bacterium Polaribacter sp. SM1127. Sci Rep UK 5:18435

    CAS  Google Scholar 

  • Sun ML, Zhao F, Chen XL, Zhang XY, Zhang YZ, Song XY, Sun CY, Yang J (2020) Promotion of Wound Healing and Prevention of Frostbite Injury in Rat Skin by Exopolysaccharide from the Arctic Marine Bacterium Polaribacter sp. SM1127. Mar Drugs 18(1):48

    Google Scholar 

  • Sutherland IW (1972) Bacterial exopolysaccharides. Adv Microb Physiol 8:143–213

    CAS  Google Scholar 

  • Sutherland IW (1983) Extracellular polysaccharides. In: Rehm H, Reed G, Dellwag H (eds) Biotechnology: biomass, microorganisms for special applications, microbial products I, energy from renewable resources. Verlag Chemie Gmbh, Wienheim, pp 531–574

    Google Scholar 

  • Sutherland IW (1985) Biosynthesis and composition of gram-negative bacterial extracellular and wall polysaccharides. Annu Rev Microbiol 39(1):243–270

    CAS  Google Scholar 

  • Sutherland IW (1990) Biotechnology of Microbial exopolysaccharides. Cambridge University Press, Cambridge, pp 122–132

    Google Scholar 

  • Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16(1):41–46

    CAS  Google Scholar 

  • Sutherland IW (2001) Microbial polysaccharides from Gram-negative bacteria. Int Dairy J 11(9):663–674

    CAS  Google Scholar 

  • Suzuki C, Kobayashi M, Kimoto-Nira H (2013) Novel exopolysaccharides produced by Lactococcus lactis subsp. lactis, and the diversity of epsE genes in the exopolysaccharide biosynthesis gene clusters. Biosci Biotechnol Biochem 77(10):2013–8

    CAS  Google Scholar 

  • Tabibloghmany FS, Ehsandoost E (2014) An overview of healthy and functionality of exopolysaccharides produced by lactic acid bacteria in the dairy industry. Eur J Food Res Rev 4(2):63

    Google Scholar 

  • Talmont F, Vincent P, Fontaine T, Guezennec J, Prieur D, Aymard P, Cuvelier G, Launay B, Fournet B (1991) Structural investigation of an acidic polysaccharide from a deep-sea hydrothermal vent marine bacterium. Food Hydrocoll 5(1–2):171–172

    CAS  Google Scholar 

  • Tuinier R, Zoon P, Olieman C, Cohen-Stuart MA, Fleer GJ, de Kruif CG (1999) Isolation and physical characterization of an exocellular polysaccharide. Biopolymers 49:1–9

    CAS  Google Scholar 

  • Upadhyay KH (2017) Isolation characterization and application of metal immobilizing marine bacteria (Ph.D. Thesis). Gujarat University, Gujarat, India

  • Upadhyay KH, Vaishnav AM, Tipre DR, Dave SR (2016) Diversity assessment and EPS production potential of cultivable bacteria from the samples of coastal site of Alang. J Microbiol Biotechnol Food Sci 6(1):661–666

    CAS  Google Scholar 

  • Upadhyay KH, Vaishnav AM, Tipre DR, Patel BC, Dave SR (2017) Kinetics and mechanisms of mercury biosorption by an exopolysaccharide producing marine isolate Bacillus licheniformis. 3 Biotech 7(5):313

    Google Scholar 

  • Urai M, Anzai H, Ogihara J, Iwabuchi N, Harayama S, Sunairi M, Nakajima M (2006) Structural analysis of an extracellular polysaccharide produced by Rhodococcus rhodochrous strain S-2. Carbohydr Res 341(6):766–775

    CAS  Google Scholar 

  • Urai M, Anzai H, Ogihara J, Iwabuchi N, Harayama S, Sunairi M, Nakajima M (2007) Structural analysis of an acidic, fatty acid ester-bonded extracellular polysaccharide produced by a pristane-assimilating marine bacterium, Rhodococcus erythropolis PR4. Carbohydr Res 342:933–942

    CAS  Google Scholar 

  • Vaishnav AM (2017) Bacterial exopolysaccharide production from fruits and potato waste (Ph.D. Thesis). Gujarat University, Gujarat, India

  • Vaishnav AM, Upadhyay KH, Tipre DR, Dave SR (2016) Characterization of potent exopolysaccharide producing bacteria isolated from fruit pulp and potato peels and enhancement in their exopolysaccharide production potential. J Microbiol Biotechnol Food Sci 6(3):874–877

    CAS  Google Scholar 

  • van Eldik R, Hubbard CD (eds) (1996) Biomolecules under extreme conditions. In: Chemistry under extreme and non-classical conditions. Wiley, New York p 515–546

  • Verdugo P (2012) Marine microgels. Annu Rev Mar Sci 4:375–400

    Google Scholar 

  • Vinogradov E, Nossova L, Korenevsky A, Beveridge TJ (2005) The structure of the capsular polysaccharide of Shewanella oneidensis strain MR-4. Carbohydr Res 340(10):1750–1753

    CAS  Google Scholar 

  • Whitfield C (1988) Bacterial extracellular polysaccharides. Can J Microbiol 34(4):415–420

    CAS  Google Scholar 

  • Willis LM, Whitfield C (2013) Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways. Carbohydr Res 378:35–44

    CAS  Google Scholar 

  • Wrangstadh M, Szewzyk U, Ostling J, Kjelleberg S (1990) Starvation-specific formation of a peripheral exopolysaccharide by a marine Pseudomonas sp., strain S9. Appl Environ Microbiol 56:2065–2072

    CAS  Google Scholar 

  • Wu Q, Liu L, Miron A, Klímová B, Wan D, Kuča K (2016). The antioxidant, immunomodulatory, and anti-inflammatory activities of Spirulina: an overview. Arch Toxicol 90(8):1817–1840

  • Wu S, Liu G, Jin W, Xiu P, Sun C (2016b) Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa. Front Microb 7:102

    CAS  Google Scholar 

  • Wuertz S, Müller E, Spaeth R, Pfleiderer P, Flemming HC (2000) Detection of heavy metals in bacterial biofilms and microbial flocs with the fluorescent complexing agent Newport Green. J Ind Microbiol Biotechnol 24(2):116–123

    CAS  Google Scholar 

  • Yang ST, Lo YM, Chattopadhyay D (1998) Production of cell-free xanthan fermentation broth by cell adsorption on fibers. Biotechnol Progr 14(2):259–264

    CAS  Google Scholar 

  • Yilmaz MT, Dertli E, Toker OS, Tatlisu NB, Sagdic O, Arici M (2015) Effect of in situ exopolysaccharide production on physicochemical, rheological, sensory, and microstructural properties of the yogurt drink ayran: an optimization study based on fermentation kinetics. J Dairy Sci 98(3):1604–1624

    CAS  Google Scholar 

  • Yu RL, Yang OU, Tan JX, Wu FD, Jing SU, Lei MI, Zhong DL (2011) Effect of EPS on adhesion of Acidithiobacillus ferrooxidans on chalcopyrite and pyrite mineral surfaces. Trans Nonferrous Metal Soc 21(2):407–412

    CAS  Google Scholar 

  • Zhang L, Liu C, Li D, Zhao Y, Zhang X, Zeng X, Yang Z, Li S (2013) Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int J Biol Macromol 54:270–275

    Google Scholar 

  • Zhang Z, Chen Y, Wang R, Cai R, Fu Y, Jiao N (2015) The fate of marine bacterial exopolysaccharide in natural marine microbial communities. Plos One 10:e0142690

    Google Scholar 

  • Zhang Z, Cai R, Zhang W, Fu Y, Jiao N (2017) A novel exopolysaccharide with metal adsorption capacity produced by a marine bacterium Alteromonas sp. JL2810. Mar drugs 15(6):175

    Google Scholar 

Download references

Acknowledgements

We are thankful to the Department of Science and Technology (DST), New Delhi, India for providing the INSPIRE Fellowship to Kinjal H. Upadhyay and University Grants Commission (UGC), New Delhi for Emeritus Professor fellowship award to Prof. Shailesh R. Dave.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh R. Dave.

Ethics declarations

Conflict of interest

We all the authors have no conflict of interest for publishing this review.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, S.R., Upadhyay, K.H., Vaishnav, A.M. et al. Exopolysaccharides from marine bacteria: production, recovery and applications. Environmental Sustainability 3, 139–154 (2020). https://doi.org/10.1007/s42398-020-00101-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42398-020-00101-5

Keywords

Navigation