Skip to main content
Log in

Evaluation of Mathematical Solutions for the Determination of Buckling of Columns Under Self-weight

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Propose

Investigation of mathematical solutions for including the self-weight of a column for calculating buckling critical load. The complexity of including self-weight resides in the fact that the mathematical formulation depends on elliptical integral solutions related to differential equations of the problem.

Method

Comparing the analytical solutions with computation modeling. The obtained results with these computational models are approximate since they depend on the discretization of the domain of the problem while analytical solutions tend to be exact. An experimental activity was carried out for analyzing mathematical accuracy.

Results

The investigation of buckling was performed through static as well as dynamic analysis. The results found shown differences smaller than 5% among the mathematical investigated solution. Besides that, all solutions represented well the problem in comparison with a laboratory test.

Conclusion

It has been evaluated solutions for stability analyses of bars under self-weight, using Euler–Greenhill analytical approach, solutions with the eigenvalues from FEM analysis, and also a dynamic solution based on the Rayleigh’s method, comparing them with dynamic laboratory tests. Can be concluded that the mathematical ways and the experimental investigation had a good agreement.

Level of evidence

IV, evidence obtained from multiple mathematical methods, static and dynamic, is experimentally confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mazzilli CEN (1979) About the instability of elastic structures case sensitive to imperfections, Monograph (Master’s Degree), Polytechnic School of University of São Paulo, São Paulo

  2. Chen WF, Lui EM (1987) Structural stability. Theory and Implementation, PTR. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  3. Galambos TV (1988) Guide to stability design criteria for metal structures, 4th edn. John Wiley, New York

    Google Scholar 

  4. Batista M (2016) On stability of columns at the first bifurcation point. Mech Res Commun 75:89–90. https://doi.org/10.1016/j.mechrescom.2016.05.010

    Article  Google Scholar 

  5. El Naschie MS (1990) Stress, stability, and chaos in structural engineering: an energy approach. McGraw-Hill, London

    Google Scholar 

  6. Euler L (1744) Methodus inveniendi lineas curvas maximi minimive sive motus scientia analytice exposita, Lausanne

  7. Michael J, Thompson T (2017) Instabilities of elastic and spinning systems: concepts and phenomena. Int J Bifurcat Chaos 27(9):1730029-1-1730029–26. https://doi.org/10.1142/S0218127417300294

    Article  MathSciNet  Google Scholar 

  8. Huot-Chantal F (2018) Sur la figure des colonnes, de Lagrange revisité, Monograph (Master’s Degree), University of Montreal

  9. Lagrange JL (1770) Sur la figure des colonnes. In: Mélanges de Philosophie et de Mathématique de la Société Royale de Turin, v. 5:123–125

  10. Greenhill AG (1881) Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and the greatest height to which a tree of given proportions can grow. Proc Cambridge Philos Soc 4:65–73

    MATH  Google Scholar 

  11. Chapra SC, Canale RP (2015) Numerical methods for engineers, 7th edn. McGraw-Hill, New York

    Google Scholar 

  12. Frisch-Fay R (1966) On the stability of a strut under uniformly distributed axial forces. Int J Solids Struct 2(3):361–369. https://doi.org/10.1016/0020-7683(66)90026-6

    Article  MATH  Google Scholar 

  13. Poincaré H (1892) Les méthodes nouvelles de la mécanique, vol 3. Gauthier-Villars et fils

  14. Lyapunov AM (1892) The general problem of the stability of motion. Kharkov Mathematical Society, Kharkov

    Google Scholar 

  15. Grishcoff N (1930) Theory of elastic stability. Bulletin Academy of Sciences, Kiev

    Google Scholar 

  16. Timoshenko SP (1936) Theory of elastic stability, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  17. Bert CW (1984) Improved technique for estimating buckling loads. ASCE J Eng Mech 110(12):1655–1665. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:12(1655)

    Article  Google Scholar 

  18. Bert CW (1987) Application of a version of the Rayleigh technique to problems of bars, beams, columns, membranes, and plates. J Sound Vib 119(2):317–326. https://doi.org/10.1016/0022-460X(87)90457-3

    Article  MathSciNet  Google Scholar 

  19. Rayleigh JWSB (1877) Theory of sound. Dover Publications, New York ((Re-issued))

    MATH  Google Scholar 

  20. Akalim DA, Sushkova OA, Isametova ME (2017) Calculation on stability of through tower designs. Bull Kazakh Acad Transp Commun 100(1):70–76

    Google Scholar 

  21. Chai YH, Wang CM (2006) An application of differential transformation to stability analysis of heavy columns. Int J Struct Stab Dyn 6(3):317–332. https://doi.org/10.1142/S0219455406001988

    Article  Google Scholar 

  22. Kato T (1971) Handbook of structural stability, Column Research Committee of Japan. Corona Publishing Co., Ltd., Tokyo

    Google Scholar 

  23. Maretic R, Glavardanov V, Mitic VM (2010) Vibration and stability of a heavy and heated vertical circular plate. Int J Struct Stab Dyn 10(05):1111–1121. https://doi.org/10.1142/s0219455410003920

    Article  MathSciNet  MATH  Google Scholar 

  24. Pajand MR, Masoodi AR (2019) Shell instability analysis by using mixed interpolation. J Braz Soc Mech Sci Eng 41(419):1–18. https://doi.org/10.1007/s40430-019-1937-y

    Article  Google Scholar 

  25. Bradford MA, Roufegarinejad A, Vrcelj Z (2006) Elastic buckling of thin-walled circular tubes containing an elastic infill. Int J Struct Stab Dyn 06(04):457–474. https://doi.org/10.1142/s0219455406002118

    Article  Google Scholar 

  26. Wang CY, Drachman B (1981) Stability of a heavy column with an end load. J Appl Mech 48(3):668–669

    Article  Google Scholar 

  27. Wang CY (1983) Buckling and postbuckling of a long-hanging elastic column due to a bottom load. J Appl Mech 50(2):311–314

    Article  Google Scholar 

  28. Ma J, Liu F, Gao X, Nie M (2018) Buckling and free vibration of a single pile considering the effect of soil-structure. Int J Struct Stab Dyn. 18(04):1850061-1-1850061–15. https://doi.org/10.1142/s021945541850061x

    Article  MathSciNet  Google Scholar 

  29. Nguyen DK (2004) Post buckling behavior of beams on two-parameter elastic foundation. Int J Struct Stab Dyn 04(01):21–43. https://doi.org/10.1142/s0219455404001082

    Article  MATH  Google Scholar 

  30. Duan WH, Wang CM (2008) Exact solution for buckling of columns including self-weight. ASCE J Eng Mech 134(1):116–119. https://doi.org/10.1061/(asce)0733-9399(2008)134:1(116)

    Article  Google Scholar 

  31. Wang CM, Ang KK (1988) Buckling capacities of braced heavy columns under an axial load. Comput Struct 28(5):563–571. https://doi.org/10.1016/0045-7949(88)90002-8

    Article  Google Scholar 

  32. Duan WH, Quek ST, Wang Q (2005) Generalized hypergeometric function solutions for transverse vibration of a class of nonuniform annular plates. J Sound Vib 287(4–5):785–807. https://doi.org/10.1016/j.jsv.2004.11.027

    Article  Google Scholar 

  33. Bateman H (1932) Partial differential equations of mathematical physics, 1st edn. Cambridge University Press, New York

    MATH  Google Scholar 

  34. Ederly A (1953) Higher transcendental functions. MacGraw-Hill, New York, p 1

    Google Scholar 

  35. Wang CM, Wang CY, Reddy JN (2004) Exact solutions for buckling of structural members. CRC Press, London

    Book  Google Scholar 

  36. Abramowitz M, Stegun IA (1965) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol 55. Courier Corporation, Chelmsford

    MATH  Google Scholar 

  37. Coşkun SB, Atay MT (2009) Determination of critical buckling load for elastic columns of constant and variable cross-sections using variational iteration method. Comput Math Appl 58(11–12):2260–2266. https://doi.org/10.1016/j.camwa.2009.03.072

    Article  MathSciNet  MATH  Google Scholar 

  38. Murawski K (2017) Technical stability of continuously loaded thin-walled slender columns, I. Lulu Press Inc, Morrisville ((ISBN 978-1-387-36762-7))

    Google Scholar 

  39. Clough RW, Penzien J (1993) Dynamic of structures, 2nd edn. McGraw-Hill, Taiwan

    MATH  Google Scholar 

  40. Temple G, Bickley WG (1933) Rayleigh’s principle and its applications to engineering. Oxford University Press, London

    MATH  Google Scholar 

  41. Ritz W (1908) Uber eine neue Methode zur Lo¨sung gewisser Variations probleme der mathematischen Physik. J Reine Angew Math 135:1–61

    Google Scholar 

  42. Han X, Zhou B, Gho W, Tan SK (2019) Effect of Ritz vectors on random seismic response of cantilever beam. J Vib Eng Technol 7:321–333. https://doi.org/10.1007/s42417-019-00121-4

    Article  Google Scholar 

  43. Wang CM, Xiang Y, Wang CY (2002) Buckling of standing vertical plates under body forces. Int J Struct Stab Dyn 02(02):151–161. https://doi.org/10.1142/s0219455402000531

    Article  MATH  Google Scholar 

  44. Sinha GP, Kumar B (2020) Review on vibration analysis of functionally graded material structural components with cracks. J Vib Eng Technol. https://doi.org/10.1007/s42417-020-00208-3

    Article  Google Scholar 

  45. Masri RA, Rasheed HA (2017) Analytical and finite element buckling solutions of fixed-fixed anisotropic laminated composite columns under axial compression. Int J Struct Stab Dyn. 17(09):1750103-1-1750103–17. https://doi.org/10.1142/s0219455417501036

    Article  MathSciNet  Google Scholar 

  46. Saito D, Wadee MA (2008) Post-buckling behaviour of prestressed steel stayed columns. Eng Struct 30(5):1224–1239. https://doi.org/10.1016/j.engstruct.2007.07.012

    Article  Google Scholar 

  47. Marques L, Silva LS, Rebelo C (2014) Rayleigh-Ritz procedure for determination of the critical load of tapered columns. Steel Compos Struct 16(1):45–58. https://doi.org/10.12989/SCS.2014.16.1.045

    Article  Google Scholar 

  48. Clough RW (1990) Original formulation of the finite element method. Finite Elem Anal Des 7(2):89–101. https://doi.org/10.1016/0168-874X(90)90001-U

    Article  Google Scholar 

  49. Hrennikoff A (1941) Solution of problems of elasticity by the framework method. ASME J Appl Mech 8:A619–A715

    Article  MathSciNet  Google Scholar 

  50. Courant R (1943) Variational methods for the solution of problems of equilibrium and vibration. Bull Am Math Soc 49:1–43

    Article  MathSciNet  Google Scholar 

  51. Argyris J (1954) Energy theorems and structural analysis. Aircraft Engineering. Reprinted (1968), Plenum Press, New York.

  52. Cook RD, Plesha DSM, Witt RJ (2014) Concepts and applications of finite element analysis. Wiley, New Jersey

    Google Scholar 

  53. Wahrhaftig AM, Brasil RMLRF, Balthazar JM (2013) The first frequency of cantilevered bars with geometric effect: a mathematical and experimental evaluation. J Braz Soc Mech Sci Eng 35:457–467. https://doi.org/10.1007/s40430-013-0043-9

    Article  Google Scholar 

  54. Wahrhaftig AM, Brasil RMLRF (2016) Representative experimental and computational analysis of the initial resonant frequency of largely deformed cantilevered beams. Int J Sol Struct 102–103:44–55. https://doi.org/10.1016/j.ijsolstr.2016.10.018

    Article  Google Scholar 

  55. Eisenberger M (1991) Buckling loads for variable cross-section members with variable axial forces. Int J Sol Struct 27(2):135–143. https://doi.org/10.1016/0020-7683(91)90224-4

    Article  Google Scholar 

  56. Pauletti RMO (2003) History, Analysis and Design of Tensioned Structures, Thesis (Free Teaching), Polytechnic School, University of São Paulo, São Paulo

  57. Levy R, Spillers WR (1995) Analysis of geometrically nonlinear structures. Chapman & Hall, New York

    Google Scholar 

  58. Jahnke E, Emde F (1945) Tables of functions with formulas and curves, 4th edn. Dover, Illinois

    MATH  Google Scholar 

  59. Xiao BJ, Li XF (2019) Exact solution of buckling load of axially exponentially graded columns and its approximation. Mech Res Commun 101:103414. https://doi.org/10.1016/j.mechrescom.2019.103414

    Article  Google Scholar 

  60. Schafer BW (2002) Local, distortional, and Euler buckling in thin-walled columns. ASCE J Struct Eng 128(3):289–299. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(289)

    Article  Google Scholar 

  61. Moen CD, Schafer BW (2009) Elastic buckling of cold-formed steel columns and beams with holes. Eng Struct 31(12):2812–2824. https://doi.org/10.1016/j.engstruct.2009.07.007

    Article  Google Scholar 

  62. Wei D, Sarria A, Elgindi M (2013) Critical buckling loads of the perfect Hollomon’s power-law columns. Mech Res Commun 47:69–76. https://doi.org/10.1016/j.mechrescom.2012.09.004

    Article  Google Scholar 

  63. Gambhir ML (2004) Stability analysis and design of structures. Springer, Patiala

    Book  Google Scholar 

  64. Filho FV (1975) Matrix analysis of structures (Static Stability, Dynamics). Technological Institute of Aeronautics, Almeida Neves (Ed.), Rio de Janeiro (in Portuguese)

  65. Wahrhaftig AM, Brasil RMLRF, César SF (2016) Creep in the fundamental frequency and stability of a slender wooden column of composite section. Rev Árvore 40(6):1119–1130. https://doi.org/10.1590/0100-67622016000600018

    Article  Google Scholar 

  66. Wahrhaftig AM, Brasil RMLRF (2017) Initial undamped resonant frequency of slender structures considering nonlinear geometric effects: the case of a 60.8 m-high mobile phone mast. J Braz Soc Mech Sci Eng 39:725–735. https://doi.org/10.1007/s40430-016-0547-1

    Article  Google Scholar 

  67. Wahrhaftig AM (2020) Time-dependent analysis of slender, tapered reinforced concrete columns. Steel Compos Struct 36(2):229–247. https://doi.org/10.12989/SCS.2020.36.2.229

    Article  Google Scholar 

  68. Wahrhaftig AM, Magalhães KMM, Siqueira GH (2020) Evaluation of limit state of stress and strain of free-fixed columns with variable geometry according to criteria from the Brazilian code for concrete structures. Lat Am J Solids Struct 17(1):e244-1-e244-19. https://doi.org/10.1590/1679-78255780

    Article  Google Scholar 

  69. AqDAnalysis (2014) Signal analysis program: user manual, rev. 6, Lynx Electronic Technology, São Paulo (in Portuguese)

  70. Bruel and Kjaer (2014) Accelerometers & conditionings, product catalogue February. Nærum, Denmark

  71. SAP2000 (2019) Integrated software for structural analysis and design, analysis reference manual. Comput Struct Inc, Berkeley

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre de M. Wahrhaftig.

Ethics declarations

Conflict of interest

Authors declare that all data, models, and code generated or used during the study appear in the submitted article; there is no conflict of interest to decelerate; and that there was no funding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Dynamic and Static Experimental Results Obtained in Testing

See Tables 1 and 2.

Table 1 Results from dynamic analysis
Table 2 Results from static analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahrhaftig, A.d.M., Magalhães, K.M.M., Brasil, R.M.L.R.F. et al. Evaluation of Mathematical Solutions for the Determination of Buckling of Columns Under Self-weight. J. Vib. Eng. Technol. 9, 733–749 (2021). https://doi.org/10.1007/s42417-020-00258-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-020-00258-7

Keywords

Navigation