Skip to main content
Log in

Dynamics of a Cracked Cantilever Beam Subjected to a Moving Point Force Using Discrete Element Method

  • Original Paper
  • Published:
Journal of Vibration Engineering & Technologies Aims and scope Submit manuscript

Abstract

Purpose

This work aims to investigate a cracked cantilever beam subjected to a moving point force using the Discrete Element Method (DEM).

Contribution and Method

A novel approach to mathematically include a moving force in discrete element formulation of a cracked beam is the main contribution of this paper. The local reduction in the stiffness of the cantilever beam due to the presence of a crack has been accounted for by a popularly used result from fracture mechanics. Hence, the present work provides an alternative approach to numerically evaluate the forced vibration of cracked beams under the application of a moving point force.

Conclusion

The methodology has been verified by comparing some of the results obtained here to those obtained using an already published analytical method. In the end, the effects of crack length, crack location, and force-velocity on the dynamic behavior of the cracked beam are studied using the proposed methodology. The proposed method can provide an effective alternative for the analysis of cracked beams subjected to a moving point force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Amezquita-Sanchez JP, Adeli H (2016) Signal processing techniques for vibration-based health monitoring of smart structures. Arch Comput Methods Eng 23(1):1–15

    Article  MathSciNet  Google Scholar 

  2. Patel SS, Chourasia A, Bhattacharyya SKPSK, Parashar J (2018) A study on efficacy of wavelet transform for damage identification in reinforced concrete buildings. J Vib Eng Technol 6(2):127–138

    Article  Google Scholar 

  3. Chatterjee A, Vaidya T (2019) Experimental investigations: dynamic analysis of a beam under the moving mass to characterize the crack presence. J Vib Eng Technol 7(3):217–226

    Article  Google Scholar 

  4. Farrar CR, Worden K (2013) Structural health monitoring: a machine learning perspective. Wiley, Chichester

    Google Scholar 

  5. Muscolino G, Santoro R (2019) Dynamics of multiple cracked prismatic beams with uncertain-but-bounded depths under deterministic and stochastic loads. J Sound Vib 443:717–731

    Article  Google Scholar 

  6. Avramov K, Malyshev S (2019) Bifurcations and chaotic forced vibrations of cantilever beams with breathing cracks. Eng Fract Mech 214:289–303

    Article  Google Scholar 

  7. Khnaijar A, Benamar R (2017) A discrete model for nonlinear vibrations of a simply supported cracked beams resting on elastic foundations. Diagnostyka 18(3):39–46

    Google Scholar 

  8. Okamura H, Liu HW, Chu C-S (1969) A cracked column under compression. Eng Fract Mech 1(3):547–564

    Article  Google Scholar 

  9. Ostachowicz WM, Krawczuk M (1991) Analysis of the effect of cracks on the natural frequencies of a cantilever. J Sound Vib 150(2):191–201

    Article  Google Scholar 

  10. Narkis Y (1994) Identification of crack location in vibrating simply supported beams. J Sound Vib 172(4):549–558

    Article  Google Scholar 

  11. Lin JD, Chang HP, Wu SC (2002) Beam vibrations with an arbitrary number of cracks. J Sound Vib 258(5):987–999

    Article  Google Scholar 

  12. Christides S, Barr ADS (1983) One-dimensional theory of cracked Bernoulli-Euler beams. Int J Mech Sci 26(11):639–648

    Google Scholar 

  13. Chondros TG et al (1998) A continuous cracked beam vibration theory. J Sound Vib 215(1):17–34

    Article  Google Scholar 

  14. Chondros TG et al (2001) Vibration of a beam with a breathing crack. J Sound Vib 239(1):57–67

    Article  Google Scholar 

  15. Nandi S, Neogy A (2002) Modelling of a beam with a breathing edge crack and some observations for crack detection. J Vib Control 8(5):673–693

    Article  Google Scholar 

  16. Bouboulas AS, Anifantis NK (2010) Finite element modeling of a vibrating beam with a breathing crack: observations on crack detection. Struct Heal Monit 10(2):131–145

    Article  Google Scholar 

  17. Neves AC, Simões FMF, Pinto A (2016) Vibrations of cracked beams: discrete mass and stiffness models. Comput Struct 168:68–77

    Article  Google Scholar 

  18. Neild SA, McFadden PD, Williams MS (2001) A discrete model of a vibrating beam using a time-stepping approach. J Sound Vib 239(1):99–121

    Article  Google Scholar 

  19. Nikolic A, Salinic S (2020) Free vibration analysis of cracked beams by using rigid segment method. Appl Math Model 84:158–172

    Article  MathSciNet  Google Scholar 

  20. Friswell MI, Penny JET (2002) Crack modeling for structural health monitoring. Struct Heal Monit 1(2):139–148

    Article  Google Scholar 

  21. Wang Y, Zhu X, Lou Z (2019) Dynamic response of beams under moving loads with finite deformation. Nonlinear Dyn 98(1):167–184

    Article  Google Scholar 

  22. Tao C, Fu Y, Dai T (2017) Dynamic analysis for cracked fiber-metal laminated beams carrying moving loads and its application for wavelet based crack detection. Compos Struct 159:463–470

    Article  Google Scholar 

  23. Museros P, Moliner E, Martinez-Rodrigo MD (2013) Free vibrations of simply-supported beam bridges under moving loads: maximum resonance, cancellation and resonant vertical acceleration. J Sound Vib 332:326–345

    Article  Google Scholar 

  24. Lee HP, Ng TY (1994) Dynamic response of a cracked beam subject to a moving load. Acta Mech 106(3–4):221–230

    Article  Google Scholar 

  25. Ã HL, Chang S (2006) Forced responses of cracked cantilever beams subjected to a concentrated moving load. Int J Mech Sci 48(12):1456–1463

    Article  Google Scholar 

  26. Shafiei M, Khaji N (2011) Analytical solutions for free and forced vibrations of a multiple cracked Timoshenko beam subject. Acta Mech 97:79–97

    Article  Google Scholar 

  27. Rieker JR, Trethewey MW (1999) Finite element analysis of an elastic beam Structure subjected to a moving distributed mass train. Mech Syst Signal Process 13(1):31–51

    Article  Google Scholar 

  28. Sarvestan V, Reza H, Ghayour M, Mokhtari A (2015) Spectral finite element for vibration analysis of cracked viscoelastic Euler – Bernoulli beam subjected to moving load. Acta Mech 226(12):4259–4280

    Article  MathSciNet  Google Scholar 

  29. Song Y, Kim T, Lee U (2016) Vibration of a beam subjected to a moving force: frequency-domain spectral element modeling and analysis. Int J Mech Sci 113:162–174

  30. Chakraborty NJG (2020) Parametric resonance in cantilever beam with feedback—induced base excitation. J Vib Eng Technol, pp 1–11

  31. Rizos PF, Aspragathos N, Dimarogonas AD (1990) Identification magnitude the of crack location modes and from in a cantilever. J Sound Vib 138(3):381–388

    Article  Google Scholar 

  32. Lin H-P, Chen C-K (2003) Accelerated convergence study of the eigenvalue problems with limited continuities. Jpn J Appl Phys 42(1):1348–1354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Kumar Agrawal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

A. Description of the Analytical Method used in this Work for Comparison with the DEM

The analytical method used in this work for comparison with the proposed numerical approach was presented by Lin et al. [25]. For the beam considered in Sect. 2, the analytical formulation will be presented in this section. The governing equation of the beam is derived by considering the beam to have two parts connected by a rotation spring at the crack location. The partial differential equations which model the vibration of the beam can be written as:

$$EI\frac{{\partial^{4} y_{i} \left( {x,t} \right)}}{{\partial x^{4} }} + \rho A\frac{{\partial^{2} y_{i} \left( {x,t} \right)}}{{\partial t^{2} }} = F_{0} \delta \left( {x - vt} \right){\text{ for }}x_{i - 1} < x < x_{i} , \, i = 1,2,$$
(18)

where \(x_{0} = 0\), \(x_{1} = L_{c}\), \(x_{2} = L\), \(y_{1}\) and \(y_{2}\) are displacements in left and right sides of the crack, respectively, \(I\) is the area moment of inertia about the centroidal axis of the beam cross section which is perpendicular to the \(x\) axis and \(A\) is the area of cross section. And the boundary conditions for the cantilever beam are given below [25]:

$$y_{1} \left( {0,t} \right) = 0,$$
(19)
$$\left. {\frac{{\partial y_{1} }}{\partial x}} \right|_{x = 0,t = t} = 0,$$
(20)
$$\left. {\frac{{\partial^{2} y_{2} }}{{\partial x^{2} }}} \right|_{x = L,t = t} = 0,$$
(21)
$$\left. {\frac{{\partial^{3} y_{2} }}{{\partial x^{3} }}} \right|_{x = L,t = t} = 0.$$
(22)

The continuity of displacement, shear force and bending moment at crack location can be written mathematically as [25]:

$$y_{1} \left( {L_{c}^{ - } ,t} \right) = y_{2} \left( {L_{c}^{ + } ,t} \right),$$
(23)
$$\left. {\frac{{\partial^{2} y_{1} }}{{\partial x^{2} }}} \right|_{{x = L_{c}^{ - } ,t = t}} = \left. {\frac{{\partial^{2} y_{2} }}{{\partial x^{2} }}} \right|_{{x = L_{c}^{ + } ,t = t}} ,$$
(24)
$$\left. {\frac{{\partial^{3} y_{1} }}{{\partial x^{3} }}} \right|_{{x = L_{c}^{ - } ,t = t}} = \left. {\frac{{\partial^{3} y_{2} }}{{\partial x^{3} }}} \right|_{{x = L_{c}^{ + } ,t = t}} ,$$
(25)

where \(L_{c}^{ - }\) and \(L_{c}^{ + }\) represent the location infinitesimally close to the crack from left and from right, respectively. Since the bending stiffness at the crack location has been reduced, there exists a discontinuity in the slope across the crack.

$$\left. {\left. {\frac{{\partial y_{2} }}{\partial x}} \right|_{{x = L_{c}^{ + } ,t = t}} - \frac{{\partial y_{1} }}{\partial x}} \right|_{{x = L_{c}^{ - } ,t = t}} = \psi L\left. {\frac{{\partial^{2} y_{2} }}{{\partial x^{2} }}} \right|_{{x = L_{c}^{ + } ,t = t}} ,$$
(26)

where \(\psi = 6*\pi \left( \frac{a}{d} \right)^{2} \xi \left( \frac{a}{d} \right)\left( \frac{d}{L} \right)\) is known as non-dimensional crack sectional flexibility and for a single-sided open crack:

$$\xi \left( \frac{a}{d} \right) = 0.6384 - 1.035\frac{a}{d} + 3.7201\left( \frac{a}{d} \right)^{2} - 5.1773\left( \frac{a}{d} \right)^{3} + 7.553\left( \frac{a}{d} \right)^{4} - 7.332\left( \frac{a}{d} \right)^{5} + 2.4909\left( \frac{a}{d} \right)^{6} .$$

Eigensolutions of the Beam

To find the eigensolutions, \(F_{0} \delta \left( {x - vt} \right)\) has to be set to zero in Eqs. (18). After that assuming the solutions of the form \(y_{i} = w_{i} \left( x \right)e^{j\omega t}\), one gets the eigenvalue problem as:

$$\frac{{\partial^{4} w_{i} \left( x \right)}}{{\partial x^{4} }} - \lambda^{4} \frac{{\partial^{2} w_{i} \left( x \right)}}{{\partial t^{2} }} = 0\quad {\text{for }}x_{i - 1} < x < x_{i} ,$$
(27)

where

$$\lambda^{4} = \frac{{\omega^{2} \rho A}}{EI}.$$
(28)

The compatibility requirements from Eqs. (23) to (26) lead to:

$$w_{1} \left( {L_{c}^{ - } } \right) = w_{2} \left( {L_{c}^{ + } } \right),$$
(29)
$$\left. {\frac{{\partial^{2} w_{1} }}{{\partial x^{2} }}} \right|_{{x = L_{c}^{ - } }} = \left. {\frac{{\partial^{2} w_{2} }}{{\partial x^{2} }}} \right|_{{x = L_{c}^{ + } }} ,$$
(30)
$$\left. {\frac{{\partial^{3} w_{1} }}{{\partial x^{3} }}} \right|_{{x = L_{c}^{ - } }} = \left. {\frac{{\partial^{3} w_{2} }}{{\partial x^{3} }}} \right|_{{x = L_{c}^{ + } }} ,$$
(31)
$$\left. {\left. {\frac{{\partial w_{2} }}{\partial x}} \right|_{{x = L_{c}^{ + } }} - \frac{{\partial w_{1} }}{\partial x}} \right|_{{x = L_{c}^{ - } }} = \psi L\left. {\frac{{\partial^{2} w_{2} }}{{\partial x^{2} }}} \right|_{{x = L_{c}^{ + } }} .$$
(32)

And the boundary conditions from Eqs. (19) to (22) lead to:

$$y_{1} \left( {0,t} \right) = 0, \to w_{1} \left( 0 \right) = 0,$$
(33)
$$\left. {\frac{{\partial y_{1} }}{\partial x}} \right|_{x = 0,t = t} = 0, \to \left. {\frac{{\partial w_{1} }}{\partial x}} \right|_{x = 0} = 0,$$
(34)
$$\left. {\frac{{\partial^{2} y_{2} }}{{\partial x^{2} }}} \right|_{x = L,t = t} = 0, \to \left. {\frac{{\partial^{2} w_{2} }}{{\partial x^{2} }}} \right|_{x = L} = 0,$$
(35)
$$\left. {\frac{{\partial^{3} y_{2} }}{{\partial x^{3} }}} \right|_{x = L,t = t} = 0, \to \left. {\frac{{\partial^{3} w_{2} }}{{\partial x^{3} }}} \right|_{x = L} = 0.$$
(36)

The general solutions of Eq. (27) can be written as [25]:

$$w_{i} \left( x \right) = A_{i} \sin \lambda (x - x_{i - 1} ) + B_{i} \cos \lambda (x - x_{i - 1} ) + C_{i} \sinh \lambda (x - x_{i - 1} ) + D_{i} \cosh \lambda (x - x_{i - 1} ), \, x_{i - 1} < x < x_{i} .$$
(37)

Application of compatibility conditions gives the relationship between the arbitrary constants of each of the segments as:

$$\left\{ {\begin{array}{*{20}c} {A_{2} } \\ {B_{2} } \\ {C_{2} } \\ {D_{2} } \\ \end{array} } \right\} = \left[ {\begin{array}{*{20}c} {t_{11} } & {t_{12} } & \cdots & {t_{14} } \\ {t_{21} } & {t_{22} } & \cdots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ {t_{41} } & \cdots & {t_{42} } & {t_{44} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {A_{1} } \\ {B_{1} } \\ {C_{1} } \\ {D_{1} } \\ \end{array} } \right\} = \left[ T \right]\left\{ {\begin{array}{*{20}c} {A_{1} } \\ {B_{1} } \\ {C_{1} } \\ {D_{1} } \\ \end{array} } \right\}.$$
(38)

The elements of matrix \(\left[ T \right]\) can be found in the appendix of [11]. Satisfaction of boundary conditions (33) and (34) gives:

$$\left[ {\begin{array}{*{20}c} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {A_{1} } \\ {B_{1} } \\ {C_{1} } \\ {D_{1} } \\ \end{array} } \right\} = \left[ P \right]_{2 \times 4} \left\{ {\begin{array}{*{20}c} {A_{1} } \\ {B_{1} } \\ {C_{1} } \\ {D_{1} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \right\}$$
(39)

And satisfying boundary conditions from Eqs. (35) and (36) and using Eq. (38) gives:

$$\left[ Q \right]_{2 \times 4} \left[ T \right]_{4 \times 4} \left\{ {\begin{array}{*{20}c} {A_{1} } \\ {B_{1} } \\ {C_{1} } \\ {D_{1} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} 0 \\ 0 \\ \end{array} } \right\},$$
(40)

where \(\left[ Q \right]_{2 \times 4} = \left[ {\begin{array}{*{20}c} { - \sin \lambda \left( {L - L_{c} } \right)} & { - \cos \lambda \left( {L - L_{c} } \right)} & {\sinh \lambda \left( {L - L_{c} } \right)} & {\cosh \lambda \left( {L - L_{c} } \right)} \\ { - \cos \lambda \left( {L - L_{c} } \right)} & {\sin \lambda \left( {L - L_{c} } \right)} & {\cosh \lambda \left( {L - L_{c} } \right)} & {\sinh \lambda \left( {L - L_{c} } \right)} \\ \end{array} } \right].\) Eqs. (41) and (42) can be combined to get:

$$\left[ {\begin{array}{*{20}c} {\left[ Q \right]_{2 \times 4} \left[ T \right]_{4 \times 4} } \\ {\left[ P \right]_{2 \times 4} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {A_{1} } \\ {B_{1} } \\ {C_{1} } \\ {D_{1} } \\ \end{array} } \right\} = \left\{ {\begin{array}{*{20}c} 0 \\ 0 \\ 0 \\ 0 \\ \end{array} } \right\}.$$
(41)

For non-trivial solutions of \(\left( {A_{1} ,B_{1} ,C_{1} ,D_{1} } \right)\),\(\det \left( {\left[ {\begin{array}{*{20}c} {\left[ Q \right]_{2 \times 4} \left[ T \right]_{4 \times 4} } \\ {\left[ P \right]_{2 \times 4} } \\ \end{array} } \right]} \right) = 0\), This provides the characteristic Eq. (42):

$$\begin{gathered} 2 - \psi \lambda_{n} \cos \lambda_{n} L_{c} \sinh \lambda_{n} L_{c} + \psi \lambda_{n} \cosh \lambda_{n} \left( {L - L_{c} } \right)\left( {\sin \lambda_{n} \left( {L - L_{c} } \right) + \cos \lambda_{n} L_{c} \cos \lambda_{n} \left( {L - L_{c} } \right)\sinh \lambda_{n} L_{c} } \right) \hfill \\ + \psi \lambda_{n} \cos \lambda_{n} \left( {L - L_{c} } \right)\sinh \lambda_{n} \left( {L - L_{c} } \right) + 2\cos \lambda_{n} L_{c} \cos \lambda_{n} \left( {L - L_{c} } \right)\sinh \lambda_{n} L_{c} \sinh \lambda_{n} \left( {L - L_{c} } \right) \hfill \\ - 2\sin \lambda_{n} L_{c} \sinh \lambda_{n} \left( {L - L_{c} } \right)\sinh \lambda_{n} L_{c} \sinh \lambda_{n} \left( {L - L_{c} } \right) \hfill \\ + \cosh \lambda_{n} L_{c} \left[ {\cosh \lambda_{n} \left( {L - L_{c} } \right)\left\{ {2\cos \lambda_{n} L - \psi \lambda_{n} \sin \lambda_{n} L} \right\}} \right] \hfill \\ + \cosh \lambda_{n} L_{c} \psi \lambda_{n} \left\{ {\sin \lambda_{n} L_{c} + \cos \lambda_{n} L_{c} \cos \lambda_{n} \left( {L - L_{c} } \right)\sin \lambda_{n} \left( {L - L_{c} } \right)} \right\} \hfill \\ = 0, \hfill \\ \end{gathered}$$
(42)

where \(\lambda_{n}\) denote the nth eigenvalue of the system. To calculate corresponding \(w_{n} \left( x \right)\) (i.e., the nth eigenfunction) first the constants \(\left( {A_{1} ,B_{1} ,C_{1} ,D_{1} } \right)\) are calculated by substituting \(\lambda_{n}\) in Eq. (41) and Eq. (38) is used to find the arbitrary constants \(\left( {A_{2} ,B_{2} ,C_{2} ,D_{2} } \right)\). These sets of constants for different values of \(\lambda_{n}\) can be substituted in Eqs. (37) to find the required eigenfunctions.

Forced Vibration Response of the Beam

The forced response of the system can now be determined by solving the Eq. (18) using the modal expansion theory. Equation (18) has been rewritten here:

$$EI\frac{{\partial^{4} y_{i} \left( {x,t} \right)}}{{\partial x^{4} }} + \rho A\frac{{\partial^{2} y_{i} \left( {x,t} \right)}}{{\partial t^{2} }} = F_{0} \delta \left( {x - vt} \right)\quad {\text{for }}x_{i - 1} < x < x_{i} , \, i = 1,2.$$

Expressing the forced response \(y\left( {x,t} \right)\) as:

$$y\left( {x,t} \right) = \sum\limits_{j = 1}^{{N_{m} }} {w_{j} \left( x \right)q_{j} \left( t \right)} ,$$
(43)

where \(w_{j} \left( x \right)\) are the eigenfunctions of the cracked beam and \(q_{j} \left( t \right)\) are the generalized coordinates and \(N_{m}\) is the number of eigenfunctions used for approximating the response.

Now substituting Eq. (43) in Eq. (18), taking the inner product with \(w_{k} \left( x \right)\) and using the orthogonality property of eigenfunctions lead to:

$$\left( {\ddot{q}_{k} + \omega_{k}^{2} q_{k} } \right)\int\limits_{0}^{L} {\rho Aw_{k} \left( x \right)w_{k} \left( x \right)dx} = \int\limits_{0}^{L} {F_{0} \delta \left( {x - vt} \right)w_{k} \left( x \right)dx} .$$
(44)

Rearranging Eq. (44) with integral on the right hand side being simplified leads to:

$$\left( {\ddot{q}_{k} + \omega_{k}^{2} q_{k} } \right) = \frac{{F_{0} w_{k} \left( {vt} \right)}}{{\int\limits_{0}^{L} {\rho Aw_{k} \left( x \right)w_{k} \left( x \right)dx} }}.$$
(45)

Ordinary differential Eq. (45) can be solved for \(q_{k}\) by using the Duhamel’s integral method and the solution can be written as:

$$q_{k} \left( t \right) = q_{k} \left( 0 \right)\cos \omega_{k} t + \frac{{\dot{q}_{k} \left( 0 \right)\sin \omega_{k} t}}{{\omega_{k} }} + \frac{1}{{\omega_{k} \int\limits_{0}^{L} {\rho Aw_{k} \left( x \right)w_{k} \left( x \right)dx} }}\int\limits_{0}^{t} {\sin \omega_{k} \left( {t - \tau } \right)F_{0} w_{k} \left( {v\tau } \right)d\tau } ,$$
(46)

where the eigenfunctions \(w_{k} \left( {vt} \right)\) can be divided into two parts from Eq. (27) and can be written as:

$$\begin{gathered} w_{k} \left( {v\tau } \right) = f_{k1} \left( {v\tau } \right) = A_{k1} \sin \lambda_{k} (v\tau - x_{0} ) + B_{k1} \cos \lambda_{k} (v\tau - x_{0} ) + C_{k1} \sinh \lambda_{k} (v\tau - x_{0} ) \hfill \\ \, + D_{k1} \cosh \lambda_{k} (v\tau - x_{0} ),v\tau \le x_{1} {\text{ or }}\tau \le \frac{{x_{1} }}{v} \hfill \\ \, = f_{k2} \left( {v\tau } \right) = A_{k2} \sin \lambda_{k} (v\tau - x_{1} ) + B_{k2} \cos \lambda_{k} (v\tau - x_{1} ) + C_{k2} \sinh \lambda_{k} (v\tau - x_{1} ) \hfill \\ \, + D_{k2} \cosh \lambda_{k} (v\tau - x_{1} ),v\tau > x_{1} {\text{ or }}\tau > \frac{{x_{1} }}{v}. \hfill \\ \end{gathered}$$

Therefore, \(q_{k} \left( t \right)\) can be determined and used in Eq. (43) along with \(w_{k} \left( x \right)\) to get the final response \(y\left( {x,t} \right)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, A.K., Chakraborty, G. Dynamics of a Cracked Cantilever Beam Subjected to a Moving Point Force Using Discrete Element Method. J. Vib. Eng. Technol. 9, 803–815 (2021). https://doi.org/10.1007/s42417-020-00265-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42417-020-00265-8

Keywords

Navigation