Skip to main content
Log in

Understanding the Sampling Bias: A Case Study on NBA Drafts

  • Original Article
  • Published:
Journal of Statistical Theory and Practice Aims and scope Submit manuscript

Abstract

In several real data applications a biased sample arises naturally from the selection procedure. Recently, Economou et al. (Biom J 62: 238–249, 2020) used the concept of bivariate weighted distributions and proposed four different families of weight functions to describe cases in which the bias in a bivariate sample is caused by adopting sampling schemes that result in over- or under-representation of individuals with specific properties in the sample. The current paper focuses on revealing the contribution of each variable to the bias in the bivariate sample. More specifically, under the Bayesian perspective, Approximate Bayesian Computation methods are used to sample approximately from the posterior distribution, and the Deviance Information Criterion is employed to compare the fit of the models obtained by using different weight functions. The proposed method is illustrated to a real data set concerning NBA draft players.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Afonso L, Corte Real P (2016) Using weighted distributions to model operational risk. ASTIN Bull 46(2):469–485

    Article  MathSciNet  Google Scholar 

  2. Arnold B, Nagaraja H (1991) On some properties of bivariate weighted distributions. Commun Stat Theory Methods 20(5–6):1853–1860

    Article  MathSciNet  Google Scholar 

  3. Berkson J (1946) Limitations of the application of fourfold table analysis to hospital data. Biom Bull 2:47–53

    Article  Google Scholar 

  4. Celeux G, Forbes F, Robert CP, Titterington DM (2006) Bayesian Anal 1(4):651–673

    MathSciNet  Google Scholar 

  5. Duong T, Goud B, Schauer K (2012) Closed-form density-based framework for automatic detection of cellular morphology changes. Proc Nat Acad Sci 109(22):8382–8387

    Article  Google Scholar 

  6. Economou P, Batsidis A, Tzavelas G, Alexopoulos P (2020) ADNI: Berkson’s paradox and weighted distributions: An application to alzheimer’s disease. Bioml J 62:238–249

    Article  Google Scholar 

  7. Economou P, Tzavelas G, Batsidis A (2020) Robust inference under r-size-biased sampling without replacement from finite population. J Appl Stat 47(13–15):2808–2824

    Article  MathSciNet  Google Scholar 

  8. Fisher R (1934) The effect of methods of ascertainment upon the estimation of frequencies. Ann Eugen 6(1):13–25

    Article  Google Scholar 

  9. Geneletti S, Best N, Toledano MB, Elliot P, Richardson S (2013) Uncovering selection bias in case-control studies using Bayesian post-stratification. Stat Med 32:2555–2570

    Article  MathSciNet  Google Scholar 

  10. Greenland S (2003) Quantifying biases in casual models: classical confounding vs collider-stratification bias. Epidemiology 14:300–306

    Google Scholar 

  11. Gupta RC, Kirmani S (1990) The role of weighted distributions in stochastic modeling. Commun Statist 19(9):3147–3162

    Article  MathSciNet  Google Scholar 

  12. Hernan M, Hernandez-Diaz S, Robins J (2004) A structural approach to selection bias. Epidemiology 15:615–625

    Article  Google Scholar 

  13. Jain K, Nanda A (1995) On multivariate weighted distributions. Commun Stat Theory Method 24(10):2517–2519

    Article  MathSciNet  Google Scholar 

  14. Kacprzak T, Herbel J, Amara A, Réfrégier A (2018) Accelerating approximate Bayesian computation with quantile regression: application to cosmological redshift distributions. J Cosmol Astropart Phys 2018(02):042

    Article  Google Scholar 

  15. Kavetski D, Fenicia F, Reichert P, Albert C (2018) Signature-domain calibration of hydrological models using approximate Bayesian computation: theory and comparison to existing applications. Water Resour Res 54(6):4059–4083

    Article  Google Scholar 

  16. McKinley T, Vernon I, Andrianakis I, McCreesh N, Oakley J, Nsubuga R, Goldstein M, White R (2018) Approximate Bayesian computation and simulation-based inference for complex stochastic epidemic models. Stat Sci 33(1):4–18. https://doi.org/10.1214/17-STS618

    Article  MathSciNet  MATH  Google Scholar 

  17. Nanda A, Jain K (1999) Some weighted distribution results on univariate and bivariate cases. J Stat Plan Inference 77(2):169–180

    Article  MathSciNet  Google Scholar 

  18. Navarro J, Ruiz J, Aguila YD (2006) Multivariate weighted distributions: a review and some extensions. Statistics 40(1):51–64

    Article  MathSciNet  Google Scholar 

  19. Patil G, Rao C (1978) Weighted distributions and size-biased sampling with applications to wildlife populations and human families. Biometrics 34(2):179–189

    Article  MathSciNet  Google Scholar 

  20. Pearl J (1995) Casual diagrams for empirical research. Biometrika 82(4):669–688

    Article  MathSciNet  Google Scholar 

  21. Rao C (1965) On discrete distributions arising out of methods of ascertainment. Sankhya Indian J Stat Ser A (1961–2002) 27(2/4):311–324

    MathSciNet  MATH  Google Scholar 

  22. Raynal L, Marin J, Pudlo P, Ribatet M, Robert CP, Estoup A (2018) ABC random forests for Bayesian parameter inference. Bioinformatics 35(10):1720–1728

    Article  Google Scholar 

  23. Richard L, Berg K, Thomas B (1994) Physical and performance characteristics of ncaa division i male basketball players. J Strength Cond Res 8(4):214–218

    Google Scholar 

  24. Rotnitzky A, Robins J (2005) Inverse probability weighted estimation in survival analysis. In: Encyclopedia of Biostatistics. Wiley, London

  25. Samuelsen S, Anestad H, Skrondal A (2007) Stratified case-cohort analysis of general cohort sampling designs. Scan J Stat 343:103–119

    Article  MathSciNet  Google Scholar 

  26. Sarabia JM, Gomez-Deniz E (2008) Construction of multivariate distributions: a review of some recent results. SORT 32(1):3–36

    MathSciNet  MATH  Google Scholar 

  27. Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc Ser B (Stat Methodol) 64(4):583–639

    Article  MathSciNet  Google Scholar 

  28. Spirtes P, Glymour C, Scheines R (1993) Causation, prediction, and search. The MIT press, Cambridge

    Book  Google Scholar 

  29. Tzavelas G, Douli M, Economou P (2017) Model misspecification effects for biased samples. Metrika 80(2):171–185

    Article  MathSciNet  Google Scholar 

  30. VanderWeel T, Herman M, Robins J (2008) Casual directed acyclic graphs and the direction of unmeasured confoundin bias. Epidemiology 19:720–728

    Article  Google Scholar 

  31. Ziv G, Lidor R (2010) Vertical jump in female and male basketball players-a review of observational and experimental studies. J Sci Med Sport 13(3):332–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Polychronis Economou.

Ethics declarations

Conflict of interest:

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 6 kb)

Appendix

Appendix

In this Appendix the posterior density is reported for the general case and in detail for the special case of the application.

The likelihood function of a biased bivariate sample \(D = (x_j, y_j), j=1,\ldots ,n\) from a parent population with known pdf \(f(x,y;\theta )\) where \(\theta \) unknown parameters’ vector, when the bias in the sample is described by the weight function \(w_{i}(x,y;\theta ,\gamma _X,\gamma _Y)\) is

$$\begin{aligned} \prod _{j=1}^{n}f_{w_{i}}(x_j,y_j;\theta ,\gamma _X,\gamma _Y)=\prod _{j=1}^{n}f_{w_{i}}(x_j,y_j;\zeta )= \frac{\prod _{j=1}^{n} w_{i}(x_j, y_j;\zeta )f(x_j, y_j;\theta )}{E_{f}^n[w_i(X,Y;\zeta )]}. \end{aligned}$$

Let \(\pi (\zeta )\) be the joint prior density of the parameters of the model, where \(\zeta = (\theta , \gamma _X, \gamma _Y)\). Then, the posterior density of the model has the form:

$$\begin{aligned} \pi (\zeta |{\mathrm{data}})\propto & {} \frac{\prod _{j=1}^{n} w_{i}(x_j, y_j;\zeta )f(x_j, y_j;\theta )}{E_{f}^n[w_i(X,Y;\zeta )]} \cdot \pi (\zeta ). \end{aligned}$$

Based on the discussion of Sect. 4.2, the joint distribution of height and the vertical jump in the population of interest is a bivariate normal. Moreover, independence of the parameters of the model is assumed and a prior distribution is adopted for each parameter \(\mu _X\), \(\mu _Y\), \(\sigma ^2_{X}\), \(\sigma ^2_{Y}\), \(\rho \), \(\gamma _X\) and \(\gamma _Y\). Then, the posterior density takes the form:

$$\begin{aligned} \pi (\zeta |data)\propto & {} \frac{\prod _{j=1}^{n} w_{i}(x_j, y_j;\zeta )f(x_j, y_j;\theta )}{E_{f}^n[w_i(X,Y;\zeta )]}\\&\pi (\mu _X) \pi (\mu _Y) \pi (\sigma ^2_X) \pi (\sigma ^2_Y) \pi (\rho ) \pi (\gamma _X)\pi (\gamma _Y). \end{aligned}$$

Using the priors described in Sect. 4.2 the following relation is obtained:

$$\begin{aligned} \pi (\zeta |data)\propto & {} \frac{\prod _{j=1}^{n} w_{i}(x_j, y_j;\zeta )}{E_{f}^n[w_i(X,Y;\zeta )]} \cdot \\&\exp \left[ -\frac{1}{2(1-\rho ^2)} \sum _{j=1}^n \left[ \frac{(x_j-\mu _X)^2}{\sigma ^2_X}\right. \right. +\\&\left. \left. \frac{(y_j-\mu _Y)^2}{\sigma ^2_Y}-2\rho \frac{(x_j-\mu _X)(y_j-\mu _Y)}{\sigma _X\sigma _Y}\right] \right] \\&\exp \left[ -\frac{1}{2}\left( \frac{(\mu _X-76.5)^2}{4.167^2}+ \frac{(\mu _Y-30)^2}{4^2}\right) \right] \\&\cdot (1+\rho )^{25-1} (1-\rho )^{30-1} (1-\rho ^2)^{-n/2}\\&\left( \frac{1}{\sigma ^2_X}\right) ^{2+1+n/2}\exp \left[ -\frac{4.167^2}{\sigma ^2_X}\right] \left( \frac{1}{\sigma ^2_Y}\right) ^{2+1+n/2}\exp \left[ -\frac{4^2}{\sigma ^2_Y}\right] \cdot \\&\exp \left[ -\frac{1}{2}\left( \frac{(\gamma _X-1)^2}{10}+\frac{(\gamma _Y-1)^2}{10}\right) \right] I(\gamma _X>0) \cdot I(\gamma _Y>0) \end{aligned}$$

which can be expressed equivalently as

$$\begin{aligned} \pi (\zeta |data)\propto & {} \frac{\prod _{j=1}^{n} w_{i}(x_j, y_j;\zeta )}{E_{f}^n[w_i(X,Y;\zeta )]} \cdot \\&\exp \left[ -\frac{1}{2(1-\rho ^2)} \sum _{j=1}^n \left[ \frac{(x_j-\mu _X)^2}{\sigma ^2_X}\right. \right. \\&\left. \left. + \frac{(y_j-\mu _Y)^2}{\sigma ^2_Y}-2\rho \frac{(x_j-\mu _X)(y_j-\mu _Y)}{\sigma _X\sigma _Y}\right] \right] \\&\exp \left[ -\frac{1}{2}\left( \frac{(\mu _X-76.5)^2}{4.167^2}+ \frac{(\mu _Y-30)^2}{4^2}\right) \right] \cdot \\&(1+\rho )^{24-n/2} (1-\rho )^{29-n/2}\\&\left( \frac{1}{\sigma ^2_X\sigma ^2_Y}\right) ^{3+n/2} \exp \left[ -\frac{4.167^2}{\sigma ^2_X}-\frac{4^2}{\sigma ^2_Y}\right] \cdot \\&\exp \left[ -\frac{1}{2}\left( \frac{(\gamma _X-1)^2}{10}+\frac{(\gamma _Y-1)^2}{10}\right) \right] I(\gamma _X>0) \cdot I(\gamma _Y>0). \end{aligned}$$

For the model \(\mathcal {M}_{1f}\), i.e., \(i=1\) and \(\gamma _X, \ \gamma _Y\) strictly positive, the posterior density has the form

$$\begin{aligned} \pi (\zeta |data)\propto & {} \frac{\prod _{j=1}^{n} \left( 1 - \left( 1-\Phi \left( \frac{x_j-\mu _X}{\sigma _X}\right) ^{\gamma _X} \right) \left( 1-\Phi \left( \frac{y_j-\mu _Y}{\sigma _Y}\right) ^{\gamma _Y} \right) \right) }{E_{f}^n\left[ \left( 1 - \left( 1-\Phi \left( \frac{X-\mu _X}{\sigma _X}\right) ^{\gamma _X} \right) \left( 1-\Phi \left( \frac{Y-\mu _Y}{\sigma _Y}\right) ^{\gamma _Y} \right) \right) \right] } \cdot \\&\exp \left[ -\frac{1}{2(1-\rho ^2)} \sum _{j=1}^n \left[ \frac{(x_j-\mu _X)^2}{\sigma ^2_X}\right. \right. \\&\left. \left. +\frac{(y_j-\mu _Y)^2}{\sigma ^2_Y}-2\rho \frac{(x_j-\mu _X)(y_j-\mu _Y)}{\sigma _X\sigma _Y}\right] \right] \\&\exp \left[ -\frac{1}{2}\left( \frac{(\mu _X-76.5)^2}{4.167^2}+ \frac{(\mu _Y-30)^2}{4^2}\right) \right] \cdot \\&(1+\rho )^{24-n/2} (1-\rho )^{29-n/2}\\&\left( \frac{1}{\sigma ^2_X\sigma ^2_Y}\right) ^{3+n/2} \exp \left[ -\frac{4.167^2}{\sigma ^2_X}-\frac{4^2}{\sigma ^2_Y}\right] \cdot \\&\exp \left[ -\frac{1}{2}\left( \frac{(\gamma _X-1)^2}{10}+\frac{(\gamma _Y-1)^2}{10}\right) \right] I(\gamma _X>0) \cdot I(\gamma _Y>0). \end{aligned}$$

Due to the posterior’s form direct sampling from it or even sampling from a standard MCMC method is not an easy task. Thus, ABC methods are used.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Economou, P., Batsidis, A., Tzavelas, G. et al. Understanding the Sampling Bias: A Case Study on NBA Drafts. J Stat Theory Pract 15, 45 (2021). https://doi.org/10.1007/s42519-021-00167-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42519-021-00167-2

Keywords

Navigation