Skip to main content
Log in

Numerical simulation of flow past stationary and oscillating deformable circles with fluid-structure interaction

  • Research Article
  • Published:
Experimental and Computational Multiphase Flow Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2022

This article has been updated

Abstract

The oscillation and deformation of the tube affect its safe and efficient operation in the shell-and-tube heat exchanger of the nuclear power plant. To offer in-depth understandings, numerical simulation of the flow around the cylinder (or particle) was carried out here by using COMSOL Multiphysics as a research tool. This paper mainly discusses the influence of physical parameters (elastic modulus and Poisson’s ratio) and lateral oscillation on the flow around the circles (cylinder or particle). The physical property parameters have a greater influence on the deformation, lift coefficient, and drag coefficient of the object, and it basically does not affect the vortex shedding frequency. After analyzing the flow around the oscillating particle, four kinds of vortex separation modes (AI, AII, S, S-S modes) are defined. In addition, the lift coefficient and drag coefficient for different modes are discussed. The phenomenon of frequency locking occurs in the flow around the oscillating particle. Simulation results prove that the separation frequency of vortex is related to the oscillation frequency

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  • Cadenaro, M., Codan, B., Navarra, C. O., Marchesi, G., Turco, G., di Lenarda, R., Breschi, L. 2011. Contraction stress, elastic modulus, and degree of conversion of three flowable composites. Eur J Oral Sci, 119: 241—245.

    Article  Google Scholar 

  • Catalano, P., Wang, M., Iaccarino, G., Moin, P. 2003. Numerical simulation of the flow around a circular cylinder at high Reynolds numbers. Int J Heat Fluid Fl, 24: 463–469.

    Article  Google Scholar 

  • Fournier, J. B., Barbetta, C. 2008. Direct calculation from the stress tensor of the lateral surface tension of fluctuating fluid membranes. Phys Rev Lett, 100: 078103.

  • Gessesse, Y. B. 2014. On the fretting wear of nuclear power plant heat exchanger tubes using a fracture mechanics approach: Theory and verification. Ph.D. Thesis. Concordia University.

    Google Scholar 

  • Gong, M. J., Peng, M. J., Zhu, H. S. 2018. Research of multiple refined degree simulating and modeling for high pressure feed water heat exchanger in nuclear power plant. Appl Therm Eng, 140: 190–207.

    Article  Google Scholar 

  • Greenspan, D. 1991. Vortex Street Modelling.

    Book  Google Scholar 

  • Guidoboni, G., Glowinski, R., Cavallini, N., Canic, S. 2009. Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow. J Comput Phys, 228: 6916–6937.

    Article  MathSciNet  Google Scholar 

  • Hamed, A. M., Vega, J., Liu, B., Chamorro, L. P. 2017. Flow around a semicircular cylinder with passive flow control mechanisms. Exp Fluids, 58: 22.

    Article  Google Scholar 

  • He, T. 2015. A partitioned implicit coupling strategy for incompressible flow past an oscillating cylinder. Int J Comput Methods, 12: 1550012.

    Article  MathSciNet  Google Scholar 

  • He, X. W., Liu, N., Wang, G. P., Zhang, F. J., Li, S., Shao, S. D., Wang, H. 2012. Staggered meshless solid-fluid coupling. ACM T Graphic, 31: 1–12.

    Article  Google Scholar 

  • Jiang, H. B., Cheng, Z. Q., Zhao, Y. P. 2013. Function airfoil and its pressure distribution and lift coefficient calculation. Appl Mech Mater, 328: 351–356.

    Article  Google Scholar 

  • Meneghini, J. R., Saltara, F., Siqueira, C. L. R., Ferrari, J. A. Jr. 2001. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. J Fluid Struct, 15: 327–350.

    Article  Google Scholar 

  • Meng, F. Q., He, B. J., Zhu, J., Zhao, D. X., Darko, A., Zhao, Z. Q. 2018. Sensitivity analysis of wind pressure coefficients on CAARC standard tall buildings in CFD simulations. J Build Eng, 16: 146–158.

    Article  Google Scholar 

  • Mustto, A. A., Bodstein, G. C. R. 2011. Subgrid-scale modeling of turbulent flow around circular cylinder by mesh-free vortex method. Eng Appl Comput Fl Mech, 5: 259–275.

    Google Scholar 

  • Mustto, A. A., Bodstein, G. C. R. 2013. Improved vortex method for the simulation of the flow around circular cylinders. In: Proceedings of the AIAA Computational Fluid Dynamics Conference.

    Google Scholar 

  • Park, J., Kwon, K., Choi, H. 1998. Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME Int J, 12: 1200–1205.

    Article  Google Scholar 

  • Penrose, J. M. T., Staples, C. J. 2002. Implicit fluid-structure coupling for simulation of cardiovascular problems. Int J Numer Meth Fl, 40: 467–478.

    Article  Google Scholar 

  • Ploumhans, P., Winckelmans, G. S., Salmon, J. K., Leonard, A., Warren, M. S. 2002. Vortex methods for direct numerical simulation of three-dimensional bluff body flows: Application to the sphere at Re = 300. 500. and 1000. J Comput Phys, 178: 427–463.

    Article  MathSciNet  Google Scholar 

  • Rajani, B. N., Kandasamy, A., Majumdar, S. 2009. Numerical simulation of laminar flow past a circular cylinder. Appl Math Model, 33: 1228–1247.

    Article  MathSciNet  Google Scholar 

  • Rajesh, V., Chamkha, A. J., Sridevi, C., Al-Mudhaf, A. F. 2017. A numerical investigation of transient MHD free convective flow of a nanofluid over a moving semi-infinite vertical cylinder. Eng Comput, 34: 1393–1412.

    Article  Google Scholar 

  • Ricci, M., Patruno, L., de Miranda, S., Ubertini, F. 2017. Flow field around a 5:1 rectangular cylinder using LES: Influence of inflow turbulence conditions, spanwise domain size and their interaction. Comput Fluids, 149: 181–193.

    Article  MathSciNet  Google Scholar 

  • Rival, D. E., Kriegseis, J., Schaub, P., Widmann, A., Tropea, C. 2014. Characteristic length scales for vortex detachment on plunging profiles with varying leading-edge geometry. Exp Fluids, 55: 1660.

  • Son, J. S., Hanratty, T. J. 1969. Numerical solution for the flow around a cylinder at Reynolds numbers of 40. 20. and 500. J Fluid Mech, 35: 369–386.

    Article  Google Scholar 

  • Tschoegl, N. W., Knauss, W. G., Emri, I. 2002. Poisson’s ratio in linear viscoelasticity A critical review. Mech Time-Depend Mat, 6: 3–51.

    Article  Google Scholar 

  • Wang, Y., Wei, S., Yan, X. T., Yao, C., Ming, Y. 2010. Computer simulation for bone scaffolds on account of fluid-solid coupling model. In: Proceedings of the 200. International Forum on Computer Science-Technology and Applications: 251–254.

    Google Scholar 

  • Wang, Z., Luo, W., Gao, L., Li, M. 2014. Modeling the bottom-up filling of through silicon vias with different additives. In: Proceedings of the 201. 15th International Conference on Electronic Packaging Technology: 618–621.

    Google Scholar 

  • Williamson, C. H. K. 1995. Vortex dynamics in the wake of a cylinder. In: Fluid Vortices. Fluid Mechanics and Its Applications, Vol. 30. Green, S. I. Ed. Springer Dordrecht: 155–234.

    Google Scholar 

  • Yue, Q., Liu, J., Luo, M., Zhang, Q. 2018. A method of fluid-solid coupling dynamics for tube bundle vibration and collision in a cylinder fluid domain. Appl Math Mech, 39: 568–583. (in Chinese)

    Article  Google Scholar 

  • Zare Ghadi, A., Goodarzian, H., Gorji-Bandpy, M., Sadegh Valipour, M. 2012. Numerical investigation of magnetic effect on forced convection around two-dimensional circular cylinder embedded in porous media. Eng Appl Comp Fluid, 6: 395–402.

    Google Scholar 

  • Zhang, Y., Xiao, Z., Fu, S. 2007. Analysis of vortex shedding modes of an in-line oscillating circular cylinder in a uniform flow. Chinese Journal of Theoretical & Applied Mechanics, 39: 408–416. (in Chinese)

    Google Scholar 

  • Zhou, X., Wang, J. J., Hu, Y. 2019. Experimental investigation on the flow around a circular cylinder with upstream splitter plate. Journal of Visual, 22: 683–695.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support of this research by the National Natural Science Foundation of China (Grant No. 51576211), the National High-tech R&D Program of China (863) (Grant No. 2014AA052701), and the Science Fund for Creative Research Groups of National Natural Science Foundation of China (Grant No. 51621002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengyao Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Gui, N., Wu, H. et al. Numerical simulation of flow past stationary and oscillating deformable circles with fluid-structure interaction. Exp. Comput. Multiph. Flow 2, 151–161 (2020). https://doi.org/10.1007/s42757-019-0054-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42757-019-0054-6

Keywords

Navigation