Skip to main content

Advertisement

Log in

Functional Electrospun Fibers for Local Therapy of Cancer

  • Review
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Despite great efforts and advancement in the treatment of cancer, tumor recurrence and metastasis remain significant challenges and demand novel therapy strategies. Recently, advances in biomaterials and drug delivery systems have facilitated the development of the local therapy of cancer, among which electrospun nanofibrous scaffolds show great promise owing to their porous structure, relatively large surface area, high drug loading capacity, similarity with the native extracellular matrix, and possibility of the combination of various therapies. Here, we review this rapidly developing field of electrospun nanofibrous scaffolds as a drug delivery system for cancer local therapy, in particular addressing stimuli-responsive drug release, as well as its combination with stem cell and immune therapy. Challenges and future perspectives are also discussed.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright © 2017 Scientific Reports

Fig. 2

(Reproduced with permission [50]. Copyright © 2015 Colloids and Surfaces B: Biointerfaces)

Fig. 3

(Reproduced with permission [55]. Copyright © 2018 Advanced Healthcare Materials)

Fig. 4

(Reproduced with permission [65]. Copyright © 2017 ChemMedChem)

Fig. 5

(Reproduced with permission [69]. Copyright © 2018 MRS Advances)

Fig. 6

(Reproduced with permission [73]. Copyright © 2015 Advanced Healthcare Materials)

Fig. 7

(Reproduced with permission [19]. Copyright © 2018 Advanced Functional Materials)

Fig. 8

(Reproduced with permission [98]. Copyright © 2017 ACS Nano)

Fig. 9

(Reproduced with permission [104]. Copyright © 2019 Small)

Fig. 10

(Reproduced with permission [115]. Copyright © 2018 Materials Horizons)

Similar content being viewed by others

References

  1. Collaboration, GB of DC. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups to 2017: a systematic analysis for the global burden of disease study. JAMA Oncol. 2019;5:1749.

    Google Scholar 

  2. Demicheli R, Retsky MW, Hrushesky WJM, Baum M, Gukas ID. The effects of surgery on tumor growth: a century of investigations. Ann Oncol. 2008;19:1821.

    CAS  Google Scholar 

  3. Tavare AN, Perry NJS, Benzonana LL, Takata M, Ma D. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents. Int J Cancer. 2012;130:1237.

    CAS  Google Scholar 

  4. Poláková L, Širc J, Hobzová R, Cocârţă A-I, Heřmánková E. Electrospun nanofibers for local anticancer therapy: review of in vivo activity. Int J Pharm. 2019;558:268.

    Google Scholar 

  5. Merkow R, Bilimoria K, Tomlinson J, Paruch J, Fleming J, Talamonti M, Ko C, Bentrem D. Postoperative complications reduce adjuvant chemotherapy use in resectable pancreatic cancer. Ann Surg. 2014;260:372.

    Google Scholar 

  6. Breugom AJ, Swets M, Bosset J-F, Collette L, Sainato A, Cionini L, Glynne-Jones R, Counsell N, Bastiaannet E, van den Broek CBM, et al. Adjuvant chemotherapy after preoperative (chemo)radiotherapy and surgery for patients with rectal cancer: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015;16:200.

    CAS  Google Scholar 

  7. Qin S-Y, Zhang A-Q, Cheng S-X, Rong L, Zhang X-Z. Drug self-delivery systems for cancer therapy. Biomaterials. 2017;112:234.

    CAS  Google Scholar 

  8. Singh M, Kundu S, Reddy A, Sreekanth V, Motiani RK, Sengupta S, Srivastava A, Bajaj A. Injectable small molecule hydrogel as a potential nanocarrier for localized and sustained in vivo delivery of doxorubicin. Nanoscale. 2014;6:12849.

    CAS  Google Scholar 

  9. Cho K, Wang X, Nie S, Chen Z, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14:1310.

    CAS  Google Scholar 

  10. Sasikala ARK, Unnithan AR, Park CH, Kim CS. Chapter 2-nanofiber-based anticancer drug delivery platform. In: Biomimetic nanoengineered materials for advanced drug delivery. 2019, pp 11–36.

  11. Cui W, Zhou Y, Chang J. Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci Technol Adv Mater. 2010;11:014108.

    Google Scholar 

  12. Peng S, Li L, Hu Y, Srinivasan M, Cheng F, Chen J, Ramakrishna S. Fabrication of spinel one-dimensional architectures by single-spinneret electrospinning for energy storage applications. ACS Nano. 2015;9:1945.

    CAS  Google Scholar 

  13. Mercante LA, Scagion VP, Migliorini FL, Mattoso LHC, Correa DS. Electrospinning-based (bio)sensors for food and agricultural applications: a review. TrAC Trends Anal Chem. 2017;91:91.

    CAS  Google Scholar 

  14. Sun B, Long Y-Z, Chen Z-J, Liu S-L, Zhang H-D, Zhang J-C, Han W-P. Recent advances in flexible and stretchable electronic devices via electrospinning. J Mater Chem C. 2014;2:1209.

    CAS  Google Scholar 

  15. Taylor GI. Disintegration of water drops in an electric field. Proc R Soc Lond Ser Math Phys Sci. 1964;280:383.

    Google Scholar 

  16. Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216.

    CAS  Google Scholar 

  17. Naahidi S, Jafari M, Logan M, Wang Y, Yuan Y, Bae H, Dixon B, Chen P. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications. Biotechnol Adv. 2017;35:530.

    CAS  Google Scholar 

  18. Gupta P, Adhikary M, Kumar M, Bhardwaj N, Mandal BB. Biomimetic, osteoconductive non-mulberry silk fiber reinforced tricomposite scaffolds for bone tissue engineering. ACS Appl Mater Interfaces. 2016;8:30797.

    CAS  Google Scholar 

  19. Sasikala ARK, Unnithan AR, Thomas RG, Ko SW, Jeong YY, Park CH, Kim CS. Multifaceted implantable anticancer device for potential postsurgical breast cancer treatment: a single platform for synergistic inhibition of local regional breast cancer recurrence, surveillance, and healthy breast reconstruction. Adv Funct Mater. 2018;28:1704793.

    Google Scholar 

  20. GhavamiNejad A, Sasikala ARK, Unnithan AR, Thomas RG, Jeong YY, Vatankhah-Varnoosfaderani M, Stadler FJ, Park CH, Kim CS. Mussel-inspired electrospun smart magnetic nanofibers for hyperthermic chemotherapy. Adv Funct Mater. 2015;25:2867.

    CAS  Google Scholar 

  21. Lim CT. Nanofiber technology: current status and emerging developments. Prog Polym Sci. 2017;70:1.

    Google Scholar 

  22. Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem. 2018;11:1165.

    CAS  Google Scholar 

  23. Sill TJ, von Recum HA. Electrospinning: applications in drug delivery and tissue engineering. Biomaterials. 2008;29:1989.

    CAS  Google Scholar 

  24. Poncelet D, de Vos P, Suter N, Jayasinghe SN. Bio-electrospraying and cell electrospinning: progress and opportunities for basic biology and clinical sciences. Adv Healthc Mater. 2012;1:27.

    CAS  Google Scholar 

  25. Hu X, Liu S, Zhou G, Huang Y, Xie Z, Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185:12.

    CAS  Google Scholar 

  26. Brudno Y, Mooney DJ. On-demand drug delivery from local depots. J Control Release. 2015;219:8.

    CAS  Google Scholar 

  27. Wolinsky JB, Colson YL, Grinstaff MW. Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers. J Control Release. 2012;159:14.

    CAS  Google Scholar 

  28. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci. 2012;125:5591.

    CAS  Google Scholar 

  29. Mbeunkui F, Johann DJ. Cancer and the tumor microenvironment: a review of an essential relationship. Cancer Chemother Pharmacol. 2009;63:571.

    Google Scholar 

  30. Thews O, Riemann A. Tumor pH and metastasis: a malignant process beyond hypoxia. Cancer Metastasis Rev. 2019;38:113.

    CAS  Google Scholar 

  31. Lindeman LR, Randtke EA, High RA, Jones KM, Howison CM, Pagel MD. A comparison of exogenous and endogenous CEST MRI methods for evaluating in vivo pH. Magn Reson Med. 2018;79:2766.

    Google Scholar 

  32. Vaupel P, Kallinowski F, Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989;49:6449.

    CAS  Google Scholar 

  33. Chen Q, Wang C, Zhang X, Chen G, Hu Q, Li H, Wang J, Wen D, Zhang Y, Lu Y. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat Nanotechnol. 2019;14:89.

    CAS  Google Scholar 

  34. Tsuchiya Y, Sawada S, Yoshioka I, Ohashi Y, Matsuo M, Harimaya Y, Tsukada K, Saiki I. Increased surgical stress promotes tumor metastasis. Surgery. 2003;133:547.

    Google Scholar 

  35. Camara O, Kavallaris A, Nöschel H, Rengsberger M, Jörke C, Pachmann K. Seeding of epithelial cells into circulation during surgery for breast cancer: the fate of malignant and benign mobilized cells. World J Surg Oncol. 2006;4:67.

    Google Scholar 

  36. Kim R. Anesthetic technique and cancer recurrence in oncologic surgery: unraveling the puzzle. Cancer Metastasis Rev. 2017;36:159.

    CAS  Google Scholar 

  37. Zeeshan MA, Shou K, Sivaraman KM, Wuhrmann T, Pané S, Pellicer E, Nelson BJ. Nanorobotic drug delivery: if I only had a heart. Mater Today. 2011;14:54.

    Google Scholar 

  38. Padma VV. An overview of targeted cancer therapy. BioMedicine. 2015;5:19.

    Google Scholar 

  39. Moses MA, Brem H, Langer R. Advancing the field of drug delivery: taking aim at cancer. Cancer Cell. 2003;4:337.

    CAS  Google Scholar 

  40. Khodadadi M, Alijani S, Montazeri M, Esmaeilizadeh N, Sadeghi-Soureh S, Pilehvar-Soltanahmadi Y. Recent advances in electrospun nanofiber-mediated drug delivery strategies for localized cancer chemotherapy. J Biomed Mater Res A. 2020;108:1444.

    CAS  Google Scholar 

  41. Rasouli S, Montazeri M, Mashayekhi S, Sadeghi-Soureh S, Dadashpour M, Mousazadeh H, Nobakht A, Zarghami N, Pilehvar-Soltanahmadi Y. Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of Curcumin and Chrysin: possible application in prevention of breast cancer local recurrence. J Drug Deliv Sci Technol. 2020;55:101402.

    CAS  Google Scholar 

  42. Monterrubio C, Pascual-Pasto G, Cano F, Vila-Ubach M, Manzanares A, Schaiquevich P, Tornero JA, Sosnik A, Mora J, Carcaboso AM. SN-38-loaded nanofiber matrices for local control of pediatric solid tumors after subtotal resection surgery. Biomaterials. 2016;79:69.

    CAS  Google Scholar 

  43. Kaplan JA, Liu R, Freedman JD, Padera R, Schwartz J, Colson YL, Grinstaff MW. Prevention of lung cancer recurrence using cisplatin-loaded superhydrophobic nanofiber meshes. Biomaterials. 2016;76:273.

    CAS  Google Scholar 

  44. Ramachandran R, Junnuthula VR, Gowd GS, Ashokan A, Thomas J, Peethambaran R, Thomas A, Unni AKK, Panikar D, Nair SV, et al. Theranostic 3-dimensional nano brain-implant for prolonged and localized treatment of recurrent glioma. Sci Rep. 2017;7:43271.

    Google Scholar 

  45. Borteh HM, Gallovic MD, Sharma S, Peine KJ, Miao S, Brackman DJ, Gregg K, Xu Y, Guo X, Guan J, et al. Electrospun acetalated dextran scaffolds for temporal release of therapeutics. Langmuir. 2013;29:7957.

    CAS  Google Scholar 

  46. Graham-Gurysh E, Moore KM, Satterlee AB, Sheets KT, Lin F-C, Bachelder EM, Miller CR, Hingtgen SD, Ainslie KM. Sustained delivery of doxorubicin via acetalated dextran scaffold prevents glioblastoma recurrence after surgical resection. Mol Pharm. 2018;15:1309.

    CAS  Google Scholar 

  47. Ranganath SH, Wang C-H. Biodegradable microfiber implants delivering paclitaxel for post-surgical chemotherapy against malignant glioma. Biomaterials. 2008;29:2996.

    CAS  Google Scholar 

  48. Qiu K, He C, Feng W, Wang W, Zhou X, Yin Z, Chen L, Wang H, Mo X. Doxorubicin-loaded electrospun poly(l-lactic acid)/mesoporous silica nanoparticles composite nanofibers for potential postsurgical cancer treatment. J Mater Chem B. 2013;1:4601.

    CAS  Google Scholar 

  49. Yuan Z, Pan Y, Cheng R, Sheng L, Wu W, Pan G, Feng Q, Cui W. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis. Nanotechnology. 2016;27:245101.

    Google Scholar 

  50. Zhao X, Zhao J, Lin ZYW, Pan G, Zhu Y, Cheng Y, Cui W. Self-coated interfacial layer at organic/inorganic phase for temporally controlling dual-drug delivery from electrospun fibers. Colloids Surf B Biointerfaces. 2015;130:1.

    CAS  Google Scholar 

  51. Jain S, Meka SRK, Chatterjee K. Engineering a piperine eluting nanofibrous patch for cancer treatment. ACS Biomater Sci Eng. 2016;2:1376.

    CAS  Google Scholar 

  52. Xu X, Chen X, Xu X, Lu T, Wang X, Yang L, Jing X. BCNU-loaded PEG–PLLA ultrafine fibers and their in vitro antitumor activity against Glioma C6 cells. J Controlled Release. 2006;114:307.

    CAS  Google Scholar 

  53. Yang G, Wang J, Wang Y, Li L, Guo X, Zhou S. An implantable active-targeting micelle-in-nanofiber device for efficient and safe cancer therapy. ACS Nano. 2015;9:1161.

    CAS  Google Scholar 

  54. Wong AD, Ye M, Ulmschneider MB, Searson PC. Quantitative analysis of the enhanced permeation and retention (epr) effect. PLoS One. 2015;10:e0123461.

    Google Scholar 

  55. Xia G, Zhang H, Cheng R, Wang H, Song Z, Deng L, Huang X, Santos HA, Cui W. Localized controlled delivery of gemcitabine via microsol electrospun fibers to prevent pancreatic cancer recurrence. Adv Healthc Mater. 2018;7:1800593.

    Google Scholar 

  56. Wen Y, Wen P, Hu T-G, Linhardt RJ, Zong M-H, Wu H, Chen Z-Y. Encapsulation of phycocyanin by prebiotics and polysaccharides-based electrospun fibers and improved colon cancer prevention effects. Int J Biol Macromol. 2020;149:672.

    CAS  Google Scholar 

  57. Yang K-N, Zhang C-Q, Wang W, Wang PC, Zhou J-P, Liang X-J. pH-responsive mesoporous silica nanoparticles employed in controlled drug delivery systems for cancer treatment. Cancer Biol Med. 2014;11:34.

    CAS  Google Scholar 

  58. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12:991.

    CAS  Google Scholar 

  59. Zhao X, Yuan Z, Yildirimer L, Zhao J, Lin ZY, Cao Z, Pan G, Cui W. Tumor-triggered controlled drug release from electrospun fibers using inorganic caps for inhibiting cancer relapse. Small. 2015;11:4284.

    CAS  Google Scholar 

  60. Yuan Z, Zhao X, Zhao J, Pan G, Qiu W, Wang X, Zhu Y, Zheng Q, Cui W. Synergistic mediation of tumor signaling pathways in hepatocellular carcinoma therapy via dual-drug-loaded pH-responsive electrospun fibrous scaffolds. J Mater Chem B. 2015;3:3436.

    CAS  Google Scholar 

  61. Zhao J, Jiang S, Zheng R, Zhao X, Chen X, Fan C, Cui W. Smart electrospun fibrous scaffolds inhibit tumor cells and promote normal cell proliferation. RSC Adv. 2014;4:51696.

    CAS  Google Scholar 

  62. Yuan Z, Zhao J, Yang Z, Wang X, Zheng Q, Cui W. Integrated therapy on residual tumor after palliative operation using dual-phase drug releasing electrospun fibrous scaffolds. J Control Release Off J Control Release Soc. 2015;213:e151.

    Google Scholar 

  63. Zhao J, Liu S, Li B, Yang H, Fan C, Cui W. Stable acid-responsive electrospun biodegradable fibers as drug carriers and cell scaffolds. Macromol Biosci. 2013;13:885.

    CAS  Google Scholar 

  64. Yuan Z, Wu W, Zhang Z, Sun Z, Cheng R, Pan G, Wang X, Cui W. In situ adjuvant therapy using a responsive doxorubicin-loaded fibrous scaffold after tumor resection. Colloids Surf B Biointerfaces. 2017;158:363.

    CAS  Google Scholar 

  65. Wang W, Cheng Y, Li Y, Zhou H, Xu L-P, Wen Y, Zhao L, Zhang X. Enrichment and viability inhibition of circulating tumor cells on a dual acid-responsive composite nanofiber film. ChemMedChem. 2017;12:529.

    CAS  Google Scholar 

  66. Fu Y, Li X, Ren Z, Mao C, Han G. Multifunctional electrospun nanofibers for enhancing localized cancer treatment. Small. 2018;14:1801183.

    Google Scholar 

  67. Jiang J, Xie J, Ma B, Bartlett DE, Xu A, Wang C-H. Mussel-inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery. Acta Biomater. 2014;10:1324.

    CAS  Google Scholar 

  68. Zhang Z, Wu Y, Kuang G, Liu S, Zhou D, Chen X, Jing X, Huang Y. Pt(IV) prodrug-backboned micelle and DCA loaded nanofibers for enhanced local cancer treatment. J Mater Chem B. 2017;5:2115.

    CAS  Google Scholar 

  69. Li D, Chen Y, Zhang Z, Chen M. Mesoporous nanofibers mediated targeted anti-cancer drug delivery. MRS Adv. 2018;3:2991.

    CAS  Google Scholar 

  70. Demirci S, Celebioglu A, Aytac Z, Uyar T. pH-responsive nanofibers with controlled drug release properties. Polym Chem. 2014;5:2050.

    CAS  Google Scholar 

  71. Yan E, Jiang J, Yang X, Fan L, Wang Y, An Q, Zhang Z, Lu B, Wang D, Zhang D. pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer. J Drug Deliv Sci Technol. 2020;55:101455.

    CAS  Google Scholar 

  72. Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev. 2006;58:1655.

    CAS  Google Scholar 

  73. Li L, Yang G, Zhou G, Wang Y, Zheng X, Zhou S. Thermally switched release from a nanogel-in-microfiber device. Adv Healthc Mater. 2015;4:1658.

    CAS  Google Scholar 

  74. Slemming-Adamsen P, Song J, Dong M, Besenbacher F, Chen M. In situ cross-linked pnipam/gelatin nanofibers for thermo-responsive drug release. Macromol Mater Eng. 2015;300:1226.

    CAS  Google Scholar 

  75. Zhang H, Niu Q, Wang N, Nie J, Ma G. Thermo-sensitive drug controlled release PLA core/PNIPAM shell fibers fabricated using a combination of electrospinning and UV photo-polymerization. Eur Polym J. 2015;71:440.

    CAS  Google Scholar 

  76. Cicotte KN, Reed JA, Nguyen PAH, De Lora JA, Hedberg-Dirk EL, Canavan HE. Optimization of electrospun poly(N-isopropyl acrylamide) mats for the rapid reversible adhesion of mammalian cells. Biointerphases. 2017;12:02C417.

    Google Scholar 

  77. Hervault A, Kim Thanh NT. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 2014;6:11553.

    CAS  Google Scholar 

  78. Canfarotta F, Piletsky SA. Engineered magnetic nanoparticles for biomedical applications. Adv Healthc Mater. 2014;3:160.

    CAS  Google Scholar 

  79. Di Masi S, Garcia Cruz A, Canfarotta F, Cowen T, Marote P, Malitesta C, Piletsky SA. Synthesis and application of ion-imprinted nanoparticles in electrochemical sensors for copper(II) determination. ChemNanoMat. 2019;5:754.

    Google Scholar 

  80. Lin T-C, Lin F-H, Lin J-C. In vitro feasibility study of the use of a magnetic electrospun chitosan nanofiber composite for hyperthermia treatment of tumor cells. Acta Biomater. 2012;8:2704.

    CAS  Google Scholar 

  81. Lin T-C, Lin F-H, Lin J-C. In vitro characterization of magnetic electrospun IDA-grafted chitosan nanofiber composite for hyperthermic tumor cell treatment. J Biomater Sci Polym Ed. 2013;24:1152.

    CAS  Google Scholar 

  82. Huang C, Soenen SJ, Rejman J, Trekker J, Chengxun L, Lagae L, Ceelen W, Wilhelm C, Demeester J, Smedt SCD. Magnetic electrospun fibers for cancer therapy. Adv Funct Mater. 2012;22:2479.

    CAS  Google Scholar 

  83. Feng Z-Q, Shi C, Zhao B, Wang T. Magnetic electrospun short nanofibers wrapped graphene oxide as a promising biomaterials for guiding cellular behavior. Mater Sci Eng C. 2017;81:314.

    CAS  Google Scholar 

  84. Song C, Wang X-X, Zhang J, Nie G-D, Luo W-L, Fu J, Ramakrishna S, Long Y-Z. Electric field-assisted in situ precise deposition of electrospun γ-Fe2O3/polyurethane nanofibers for magnetic hyperthermia. Nanoscale Res Lett. 2018;13:273.

    Google Scholar 

  85. Radmansouri M, Bahmani E, Sarikhani E, Rahmani K, Sharifianjazi F, Irani M. Doxorubicin hydrochloride—loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release. Int J Biol Macromol. 2018;116:378.

    CAS  Google Scholar 

  86. Niiyama E, Uto K, Lee CM, Sakura K, Ebara M. Hyperthermia nanofiber platform synergized by sustained release of paclitaxel to improve antitumor efficiency. Adv Healthc Mater. 2019;8:1900102.

    Google Scholar 

  87. Ercole F, Davis TP, Evans RA. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem. 2010;1:37.

    CAS  Google Scholar 

  88. Appidi T, Pemmaraju DB, Khan RA, Alvi SB, Srivastava R, Pal M, Khan N, Rengan AK. Light-triggered selective ROS-dependent autophagy by bioactive nanoliposomes for efficient cancer theranostics. Nanoscale. 2020;12:2028.

    CAS  Google Scholar 

  89. Xiao W, Chen W-H, Xu X-D, Li C, Zhang J, Zhuo R-X, Zhang X-Z. Design of a cellular-uptake-shielding “plug and play” template for photo controllable drug release. Adv Mater. 2011;23:3526.

    CAS  Google Scholar 

  90. Xu X, Zeng Z, Huang Z, Sun Y, Huang Y, Chen J, Ye J, Yang H, Yang C, Zhao C. Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy. Carbohydr Polym. 2020;229:115394.

    Google Scholar 

  91. Fu G-D, Xu L-Q, Yao F, Li G-L, Kang E-T. Smart nanofibers with a photoresponsive surface for controlled release. ACS Appl Mater Interfaces. 2009;1:2424.

    CAS  Google Scholar 

  92. Wei X, Liu C, Wang Z, Luo Y. 3D printed core-shell hydrogel fiber scaffolds with NIR-triggered drug release for localized therapy of breast cancer. Int J Pharm. 2020;580:119219.

    CAS  Google Scholar 

  93. Raza A, Hayat U, Rasheed T, Bilal M, Iqbal HMN. “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review. J Mater Res Technol. 2019;8:1497.

    CAS  Google Scholar 

  94. Cheng M, Wang H, Zhang Z, Li N, Fang X, Xu S. Gold nanorod-embedded electrospun fibrous membrane as a photothermal therapy platform. ACS Appl Mater Interfaces. 2014;6:1569.

    CAS  Google Scholar 

  95. Park JH, Seo H, Kim DI, Choi JH, Son JH, Kim J, Moon GD, Hyun DC. Gold nanocage-incorporated poly(ε-caprolactone) (pcl) fibers for chemophotothermal synergistic cancer therapy. Pharmaceutics. 2019;11:60.

    CAS  Google Scholar 

  96. Mauro N, Scialabba C, Pitarresi G, Giammona G. Enhanced adhesion and in situ photothermal ablation of cancer cells in surface-functionalized electrospun microfiber scaffold with graphene oxide. Int J Pharm. 2017;526:167.

    CAS  Google Scholar 

  97. Chen Y, Li C, Hou Z, Huang S, Liu B, He F, Luo L, Lin J. Polyaniline electrospinning composite fibers for orthotopic photothermal treatment of tumors in vivo. New J Chem. 2015;39:4987.

    CAS  Google Scholar 

  98. Wang X, Lv F, Li T, Han Y, Yi Z, Liu M, Chang J, Wu C. Electrospun micropatterned nanocomposites incorporated with Cu2s nanoflowers for skin tumor therapy and wound healing. ACS Nano. 2017;11:11337.

    CAS  Google Scholar 

  99. Kim Y-J, Ebara M, Aoyagi T. A smart hyperthermia nanofiber with switchable drug release for inducing cancer apoptosis. Adv Funct Mater. 2013;23:5753.

    CAS  Google Scholar 

  100. Sasikala ARK, Unnithan AR, Yun Y-H, Park CH, Kim CS. An implantable smart magnetic nanofiber device for endoscopic hyperthermia treatment and tumor-triggered controlled drug release. Acta Biomater. 2016;31:122.

    CAS  Google Scholar 

  101. Zhang Y, Yarin AL. Stimuli-responsive copolymers of n-isopropyl acrylamide with enhanced longevity in water for micro- and nanofluidics, drug delivery and non-woven applications. J Mater Chem. 2009;19:4732.

    CAS  Google Scholar 

  102. Li H, Sang Q, Wu J, Williams GR, Wang H, Niu S, Wu J, Zhu L-M. Dual-responsive drug delivery systems prepared by blend electrospinning. Int J Pharm. 2018;543:1.

    CAS  Google Scholar 

  103. Li H, Liu K, Williams GR, Wu J, Wu J, Wang H, Niu S, Zhu L-M. Dual temperature and pH responsive nanofiber formulations prepared by electrospinning. Colloids Surf B Biointerfaces. 2018;171:142.

    Google Scholar 

  104. Xiao J, Cheng L, Fang T, Zhang Y, Zhou J, Cheng R, Tang W, Zhong X, Lu Y, Deng L, et al. Nanoparticle-embedded electrospun fiber–covered stent to assist intraluminal photodynamic treatment of oesophageal cancer. Small. 2019;15:1904979.

    CAS  Google Scholar 

  105. Loebinger MR, Janes SM. Stem cells as vectors for antitumour therapy. Thorax. 2010;65:362.

    Google Scholar 

  106. Hu Q, Sun W, Wang J, Ruan H, Zhang X, Ye Y, Shen S, Wang C, Lu W, Cheng K, et al. Conjugation of haematopoietic stem cells and platelets decorated with anti-PD-1 antibodies augments anti-leukaemia efficacy. Nat Biomed Eng. 2018;2:831.

    CAS  Google Scholar 

  107. Bu L-L, Yan J, Wang Z, Ruan H, Chen Q, Gunadhi V, Bell RB, Gu Z. Advances in drug delivery for post-surgical cancer treatment. Biomaterials. 2019;219:119182.

    CAS  Google Scholar 

  108. Bagó JR, Pegna GJ, Okolie O, Mohiti-Asli M, Loboa EG, Hingtgen SD. Electrospun nanofibrous scaffolds increase the efficacy of stem cell-mediated therapy of surgically resected glioblastoma. Biomaterials. 2016;90:116.

    Google Scholar 

  109. Bagó JR, Okolie O, Dumitru R, Ewend MG, Parker JS, Werff RV, Underhill TM, Schmid RS, Miller CR, Hingtgen SD. Tumor-homing cytotoxic human induced neural stem cells for cancer therapy. Sci Transl Med. 2017;9:aah6510.

    Google Scholar 

  110. Bagó JR, Pegna GJ, Okolie O, Hingtgen SD. Fibrin matrices enhance the transplant and efficacy of cytotoxic stem cell therapy for post-surgical cancer. Biomaterials. 2016;84:42.

    Google Scholar 

  111. Masarova L, Kantarjian H, Garcia-Mannero G, Ravandi F, Sharma P, Daver N. Harnessing the immune system against leukemia: monoclonal antibodies and checkpoint strategies for AML. Immunotherapy 2017, pp. 73–95.

  112. El-Mesery M, Trebing J, Schäfer V, Weisenberger D, Siegmund D, Wajant H. CD40-directed scFv-TRAIL fusion proteins induce CD40-restricted tumor cell death and activate dendritic cells. Cell Death Dis. 2013;4:e916.

    CAS  Google Scholar 

  113. Moradi-Kalbolandi S, Hosseinzade A, Salehi M, Merikhian P, Farahmand L. Monoclonal antibody-based therapeutics, targeting the epidermal growth factor receptor family: from herceptin to Pan HER. J Pharm Pharmacol. 2018;70:841.

    CAS  Google Scholar 

  114. Sandin LC, Tötterman TH, Mangsbo SM. Local immunotherapy based on agonistic CD40 antibodies effectively inhibits experimental bladder cancer. Oncoimmunology. 2014;3:e27400.

    Google Scholar 

  115. Liu X, Zhang H, Cheng R, Gu Y, Yin Y, Sun Z, Pan G, Deng Z, Yang H, Deng L, et al. An immunological electrospun scaffold for tumor cell killing and healthy tissue regeneration. Mater Horiz. 2018;5:1082.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (81930051 and 51873107) and Shanghai Talent Development Fund (2018099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenguo Cui.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Cui, W. Functional Electrospun Fibers for Local Therapy of Cancer. Adv. Fiber Mater. 2, 229–245 (2020). https://doi.org/10.1007/s42765-020-00053-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00053-9

Keywords

Navigation