Skip to main content

Advertisement

Log in

Fermentative bio-hydrogen production using lignocellulosic waste biomass: a review

  • Review
  • Published:
Waste Disposal & Sustainable Energy Aims and scope Submit manuscript

Abstract

Solid waste management needs, increasing pollution level by burning or dumping of waste, and the use of fossil fuels and depleting energy resources are a few of the problems of the decade that need to find answers. Disposal of lots of compound polymers-rich biomass waste is done worldwide by dumping on land or into water bodies or else by incineration or long-term storage in an available facility commonly. This kind of disposal instead becomes a reason to add the soil, water, and air pollution. A lot of multidisciplinary collaboration in different streams of science and technology has added to the efficiency of using such waste for use as an alternative energy form, like biogas and biohydrogen. The use of biogas plants for converting biological waste into methane using municipal solid waste (MSW) is known since a long time. Along with MSW, a lot of other agricultural waste and kitchen waste are also added every day to nature. But the complex components of such waste material like lignocellulosic wastes still don’t pass the test of qualifying as a resource for biogas and even more energy-efficient and cleaner biofuel, bio-hydrogen. It may be because of its complicated structure and a lot of parameters that affect its use for converting it into bio-hydrogen. This review is designed to analyze and compare these parameters for optimum lignocellulosic waste conversion, more specifically agriculture and food waste, into cleaner energy forms that would help to tackle the solid waste management and air pollution control more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ferreira, S., Moreira, N.A. and Monteiro, E. 2009. Bioenergy overview for Portugal. Biomass and Bioenergy 33: 1567–1576.

    Google Scholar 

  2. Kuo, J. and Dow, J. 2017. Biogas production from anaerobic digestion of food waste and relevant air quality implications. Journal of the Air and Waste Management Association 67: 1000–1011. https://doi.org/10.1080/10962247.2017.1316326.

    Article  CAS  Google Scholar 

  3. Ray, A. 2008. Waste management in developing Asia: can trade and cooperation help? The Journal of Environment and Development 17: 3–25. https://doi.org/10.1177/1070496507310742.

    Article  Google Scholar 

  4. Rajput, R., Prasad, G. and Choprs, A.K. 2009. Scenario of solid waste management in present Indian context Caspian. Journal of Environmental Sciences 7: 45–53.

    Google Scholar 

  5. Srivastava, S.K. 2020. Advancement in biogas production from the solid waste by optimizing the anaerobic digestion. Waste Disposal and Sustainable Energy 2: 1–19.

    Google Scholar 

  6. Parikka, M. 2004. Global biomass fuel resources. Biomass and bioenergy 27: 613–620.

    Google Scholar 

  7. Rai, P.K., Singh, S.P. and Asthana, R.K. 2012. Biohydrogen production from cheese whey wastewater in a two-step anaerobic process. Applied Biochemistry and Biotechnology 167: 1540–1549. https://doi.org/10.1007/s12010-011-9488-4.

    Article  CAS  Google Scholar 

  8. Guo, X.M., Trably, E., Latrille, E., et al. 2010. Hydrogen production from agricultural waste by dark fermentation: a review. International Journal of Hydrogen Energy 35: 10660–10673. https://doi.org/10.1016/j.ijhydene.2010.03.008.

    Article  CAS  Google Scholar 

  9. Angelidaki, I., Kongjan, P., Thomsen, M.H., et al. 2007. Biorefinery for sustainable biofuel production from energy crops; conversion of lignocellulose to bioethanol, biohydrogen and biomethane. In Bioenergy for our future: 11th IWA world congress on anaerobic digestion (AD11), 23–27 September 2007, Brisbane, Australia.

  10. Das, D. and Veziroǧlu, T.N. 2001. Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 26: 13–28.

    CAS  Google Scholar 

  11. Kapdan, I.K. and Kargi, F. 2006. Bio-hydrogen production from waste materials. Enzyme and Microbial Technology 38: 569–582. https://doi.org/10.1016/j.enzmictec.2005.09.015.

    Article  CAS  Google Scholar 

  12. Ghosh, S.K. 2016. Biomass and bio-waste supply chain sustainability for bio-energy and bio-fuel production. Procedia Environmental Sciences 31: 31–39.

    Google Scholar 

  13. Ren, N., Wang, A., Cao, G., et al. 2009. Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnology Advances 27: 1051–1060.

    CAS  Google Scholar 

  14. Ren, N.Q., Cao, G.L., Guo, W.Q., et al. 2010. Biological hydrogen production from corn stover by moderately thermophile thermoanaerobacterium thermosaccharolyticum W16. International Journal of Hydrogen Energy 35: 2708–2712.

    CAS  Google Scholar 

  15. De Vrije, T., de Haas, G., Tan, G., et al. 2002. Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. International Journal of Hydrogen Energy 27: 1381–1390.

    Google Scholar 

  16. Ntaikou, I., Gavala, H.N., Kornaros, M., et al. 2008. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. International Journal of Hydrogen Energy 33: 1153–1163.

    CAS  Google Scholar 

  17. Han, S.K. and Shin, H.S. 2004. Performance of an innovative two-stage process converting food waste to hydrogen and methane. Journal of the Air and Waste Management Association 54: 242–249. https://doi.org/10.1080/10473289.2004.10470895.

    Article  CAS  Google Scholar 

  18. Kim, S.H., Han, S.K. and Shin, H.S. 2004. Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. International Journal of Hydrogen Energy 29: 1607–1616.

    CAS  Google Scholar 

  19. Shin, H.S., Youn, J.H. and Kim, S.H. 2004. Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. International Journal of Hydrogen Energy 29: 1355–1363.

    CAS  Google Scholar 

  20. Valdez-Vazquez, I., Ríos-Leal, E., Esparza-García, F., et al. 2005. Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime. International Journal of Hydrogen Energy 30: 1383–1391.

    CAS  Google Scholar 

  21. Fang, H.H., Li, C. and Zhang, T. 2006. Acidophilic biohydrogen production from rice slurry. International Journal of Hydrogen Energy 31: 683–692.

    CAS  Google Scholar 

  22. Fan, Y.T., Zhang, Y.H., Zhang, S.F., et al. 2006. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technology 97: 500–505.

    CAS  Google Scholar 

  23. Alzate-Gaviria, L.M., Sebastian, P., Pérez-Hernández, A., et al. 2007. Comparison of two anaerobic systems for hydrogen production from the organic fraction of municipal solid waste and synthetic wastewater. International Journal of Hydrogen Energy 32: 3141–3146.

    CAS  Google Scholar 

  24. Zhang, M.L., Fan, Y.T., Xing, Y., et al. 2007. Enhanced biohydrogen production from cornstalk wastes with acidification pretreatment by mixed anaerobic cultures. Biomass and Bioenergy 31: 250–254.

    CAS  Google Scholar 

  25. Lee, Z.K., Li, S.L., Kuo, P.C. et al. 2010. Thermophilic bio-energy process study on hydrogen fermentation with vegetable kitchen waste. International Journal of Hydrogen Energy 35: 13458–13466.

    CAS  Google Scholar 

  26. Chen, C.C., Chuang, Y.S., Lin, C.Y., et al. 2012. Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. International Journal of Hydrogen Energy 37: 15540–15546.

    CAS  Google Scholar 

  27. Subhash, G.V. and Mohan, S.V. 2014. Deoiled algal cake as feedstock for dark fermentative biohydrogen production: an integrated biorefinery approach. International Journal of Hydrogen Energy 39: 9573–9579.

    Google Scholar 

  28. Han, W., Yan, Y., Shi, Y., et al. 2016. Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems. Scientific Reports 6: 38395. https://doi.org/10.1038/srep38395.

    Article  CAS  Google Scholar 

  29. FreedomCAR and Fuel Partnership. 2009. Hydrogen production overview of technology option. https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/h2_tech_roadmap.pdf. Accessed 19 May 2020.

  30. Rai, P. and Singh, S. 2013. Biological production of clean energy. In Hydrogen recent advances in microbiology, ed. Tiwari, S.P., Rajesh, S. and Rajeeva, G., 55–84. New York: Nova Science Publishers Inc.

    Google Scholar 

  31. Sompong, O., Mamimin, C., Prasertsan, P. 2018. Biohythane production from organic wastes by two-stage anaerobic fermentation technology. Advances in Biofuels and Bioenergy. https://doi.org/10.5772/intechopen.74392.

    Article  Google Scholar 

  32. Bauer, C. and Forest, T. 2001. Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on SI engine performance. International Journal of Hydrogen Energy 26: 55–70.

    CAS  Google Scholar 

  33. Di Sarli, V. and di Benedetto, A. 2007. Laminar burning velocity of hydrogen–methane/air premixed flames. International Journal of Hydrogen Energy 32: 637–646.

    Google Scholar 

  34. Chandrasekhar, K., Lee, Y.J. and Lee, D.W. 2015. Biohydrogen production: strategies to improve process efficiency through microbial routes. International Journal of Molecular Sciences 16: 8266–8293. https://doi.org/10.3390/ijms16048266.

    Article  CAS  Google Scholar 

  35. Hallenbeck, P.C. and Ghosh, D. 2009. Advances in fermentative biohydrogen production: the way forward? Trends in Biotechnology 27: 287–297.

    CAS  Google Scholar 

  36. Das, D. 2009. Advances in biohydrogen production processes: An approach towards commercialization. International Journal of Hydrogen Energy 34: 7349–7357.

    CAS  Google Scholar 

  37. Das, D. and Veziroglu, T.N. 2008. Advances in biological hydrogen production processes. International Journal of Hydrogen Energy 33: 6046–6057.

    CAS  Google Scholar 

  38. Suzuki, Y. 1982. On hydrogen as fuel gas. International Journal of Hydrogen Energy 7: 227–230.

    Google Scholar 

  39. Nath, K. and Das, D. 2003. Hydrogen from biomass. Current Science 85 (3): 265–271.

    CAS  Google Scholar 

  40. Kotay, S.M. and Das, D. 2008. Biohydrogen as a renewable energy resource—prospects and potentials. International Journal of Hydrogen Energy 33: 258–263.

    Google Scholar 

  41. Hu, B.B., Li, M.Y., Wang, Y.T., et al. 2018. High-yield biohydrogen production from non-detoxified sugarcane bagasse: fermentation strategy and mechanism. Chemical Engineering Journal 335: 979–987. https://doi.org/10.1016/j.cej.2017.10.157.

    Article  CAS  Google Scholar 

  42. Ghimire, A., Frunzo, L., Pontoni, L., et al. 2015. Dark fermentation of complex waste biomass for biohydrogen production by pretreated thermophilic anaerobic digestate. Journal of Environmental Management 152: 43–48.

    CAS  Google Scholar 

  43. Cheng, C.L., Lo, Y.C., Lee, K.S., et al. 2011. Biohydrogen production from lignocellulosic feedstock. Bioresource Technology 102: 8514–8523.

    CAS  Google Scholar 

  44. Akinbomi, J., Wikandari, R. and Taherzadeh, M.J. 2015. Enhanced fermentative hydrogen and methane production from an inhibitory fruit-flavored medium with membrane-encapsulated cells. Membranes 5: 616–631.

    CAS  Google Scholar 

  45. Bakonyi, P., Kumar, G., Koók, L., et al. 2018. Microbial electrohydrogenesis linked to dark fermentation as integrated application for enhanced biohydrogen production: a review on process characteristics, experiences and lessons. Bioresource Technology 251: 381–389.

    CAS  Google Scholar 

  46. Jung, K.W., Kim, D.H. and Shin, H.S. 2012. Continuous fermentative hydrogen and methane production from Laminaria japonica using a two-stage fermentation system with recycling of methane fermented effluent. International Journal of Hydrogen Energy 37: 15648–15657.

    CAS  Google Scholar 

  47. Jung, K.W., Moon, C., Cho, S.K., et al. 2013. Conversion of organic solid waste to hydrogen and methane by two-stage fermentation system with reuse of methane fermenter effluent as diluting water in hydrogen fermentation. Bioresource Technology 139: 120–127. https://doi.org/10.1016/j.biortech.2013.04.041.

    Article  CAS  Google Scholar 

  48. Chu, C.Y. and Wang, Z.F. 2017. Dairy cow solid waste hydrolysis and hydrogen/methane productions by anaerobic digestion technology. International Journal of Hydrogen Energy 42: 30591–30598.

    CAS  Google Scholar 

  49. Algapani, D.E., Qiao, W., di Pumpo, F., et al. 2018. Long-term bio-H2 and bio-CH4 production from food waste in a continuous two-stage system: energy efficiency and conversion pathways. Bioresource Technology 248: 204–213.

    CAS  Google Scholar 

  50. Gomez-Romero, J., Gonzalez-Garcia, R., Chairez, I., et al. 2016. Continuous two-staged co-digestion process for biohydrogen production from agro-industrial wastes. International Journal of Energy Research 40: 257–272.

    CAS  Google Scholar 

  51. Hwang, J.H., Choi, J.A., Abou-Shanabab, R.A.I. et al. 2011. Feasibility of hydrogen production from ripened fruits by a combined two-stage (dark/dark) fermentation system. Bioresource Technology 102: 1051–1058. https://doi.org/10.1016/j.biortech.2010.08.047.

    Article  CAS  Google Scholar 

  52. Náthia-Neves, G., Neves, T.S.A., Berni, M., et al. 2018. Start-up phase of a two-stage anaerobic co-digestion process: hydrogen and methane production from food waste and vinasse from ethanol industry. Biofuel Research Journal 5: 813–820.

    Google Scholar 

  53. Monlau, F., Sambusiti, C., Barakat, A. et al. 2012. Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environmental Science and Technology 46: 12217–12225.

    CAS  Google Scholar 

  54. Cheng, J., Lin, R., Ding, L., et al. 2015. Fermentative hydrogen and methane cogeneration from cassava residues: Effect of pretreatment on structural characterization and fermentation performance. Bioresource Technology 179: 407–413.

    CAS  Google Scholar 

  55. Rafieenia, R., Girotto, F., Peng, W., et al. 2017. Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste Management 59: 194–199.

    CAS  Google Scholar 

  56. Ravindran, R., Jaiswal, S., Abu-Ghannam, N., et al. 2018. A comparative analysis of pretreatment strategies on the properties and hydrolysis of brewers’ spent grain. Bioresource Technology 248: 272–279.

    CAS  Google Scholar 

  57. Kumar, P., Barrett, D.M., Delwiche, M.J., et al. 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research 48: 3713–3729. https://doi.org/10.1021/ie801542g.

    Article  CAS  Google Scholar 

  58. Taherzadeh, M.J. and Karimi, K. 2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences 9: 1621.

    CAS  Google Scholar 

  59. Zheng, Y., Zhao, J., Xu, F., et al. 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science 42: 35–53.

    Google Scholar 

  60. Taha, M., Shahsavari, E., Al-Hothaly, K., et al. 2015. Enhanced biological straw saccharification through coculturing of lignocellulose-degrading microorganisms. Applied Biochemistry and Biotechnology 175: 3709–3728.

    CAS  Google Scholar 

  61. Song, L., Yu, H., Ma, F., et al. 2013. Biological pretreatment under non-sterile conditions for enzymatic hydrolysis of corn stover. BioResources 8: 3802–3816.

    Google Scholar 

  62. Bai, Y., Li, W., Chen, C. and Liao, P. 2010. Biological pretreatment of cotton stalks and domestication of inocula in biogas fermentation. Microbiol China 37: 513–519.

    CAS  Google Scholar 

  63. Zhang, Q., He, J., Tian, M., et al. 2011. Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresource Technology 102: 8899–8906.

    CAS  Google Scholar 

  64. Castoldi, R., Bracht, A., de Morais, G.R., et al. 2014. Biological pretreatment of Eucalyptus grandis sawdust with white-rot fungi: study of degradation patterns and saccharification kinetics. Chemical Engineering Journal 258: 240–246.

    CAS  Google Scholar 

  65. Nayan, N., Sonnenberg, A.S., Hendriks, W.H., et al. 2018. Screening of white-rot fungi for bioprocessing of wheat straw into ruminant feed. Journal of Applied Microbiology 125: 468–479.

    CAS  Google Scholar 

  66. Mackuľak, T., Prousek, J., Švorc, Ľ., et al. 2012. Increase of biogas production from pretreated hay and leaves using wood-rotting fungi. Chemical Papers 66: 649–653.

    Google Scholar 

  67. Zhao, B.H., Chen, J., Yu, H.Q., et al. 2017. Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example. Frontiers of Environmental Science and Engineering 11: 17.

    Google Scholar 

  68. Dhiman, S.S., Haw, J.R., Kalyani, D., et al. 2015. Simultaneous pretreatment and saccharification: green technology for enhanced sugar yields from biomass using a fungal consortium. Bioresource Technology 179: 50–57.

    CAS  Google Scholar 

  69. Rico, A., Rencoret, J., del Río, J.C., et al. 2014. Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnology for Biofuels 7: 6.

    Google Scholar 

  70. Cui, M., Yuan, Z., Zhi, X., et al. 2010. Biohydrogen production from poplar leaves pretreated by different methods using anaerobic mixed bacteria. International Journal of hydrogen energy 35: 4041–4047.

    CAS  Google Scholar 

  71. Zhong, C., Wang, C., Wang, F., et al. 2016. Enhanced biogas production from wheat straw with the application of synergistic microbial consortium pretreatment RSC. Advances 6: 60187–60195.

    CAS  Google Scholar 

  72. Tantayotai, P., Pornwongthong, P., Muenmuang, C., et al. 2017. Effect of cellulase-producing microbial consortium on biogas production from lignocellulosic biomass. Energy Procedia 141: 180–183.

    CAS  Google Scholar 

  73. Liang, J., Fang, X., Lin, Y., et al. 2018. A new screened microbial consortium OEM2 for lignocellulosic biomass deconstruction and chlorophenols detoxification. Journal of Hazardous Materials 347: 341–348.

    CAS  Google Scholar 

  74. Zhao, L., Cao, G.L., Ren, H.Y. et al. 2012. Fungal pretreatment of cornstalk with Phanerochaete chrysosporium for enhancing enzymatic saccharification and hydrogen production. Bioresource Technology 114: 365–369.

    CAS  Google Scholar 

  75. Cheng, X.Y. and Liu, C.Z. 2012. Fungal pretreatment enhances hydrogen production via thermophilic fermentation of cornstalk. Applied Energy 91: 1–6.

    CAS  Google Scholar 

  76. Zhi, Z. and Wang, H. 2014. White-rot fungal pretreatment of wheat straw with Phanerochaete chrysosporium for biohydrogen production: simultaneous saccharification and fermentation. Bioprocess and Biosystems Engineering 37: 1447–1458.

    CAS  Google Scholar 

  77. Mahajan, R., Nikitina, A., Litti, Y., et al. 2019. Evaluating anaerobic and aerobic digestion strategies for degradation of pretreated pine needle litter. International Journal of Environmental Science and Technology 16: 191–200.

    CAS  Google Scholar 

  78. Ziemiński, K., Romanowska, I. and Kowalska, M. 2012. Enzymatic pretreatment of lignocellulosic wastes to improve biogas production. Waste Management 32: 1131–1137.

    Google Scholar 

  79. Ravindran, R. and Jaiswal, A.K. 2016. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: challenges and opportunities. Bioresource technology 199: 92–102.

    CAS  Google Scholar 

  80. Elbeshbishy, E., Dhar, B.R., Nakhla, G., et al. 2017. A critical review on inhibition of dark biohydrogen fermentation. Renewable and Sustainable Energy Reviews 79: 656–668.

    CAS  Google Scholar 

  81. Dabrock, B., Bahl, H. and Gottschalk, G. 1992. Parameters affecting solvent production by Clostridium pasteurianum. Applied and Environment Microbiology 58: 1233–1239.

    CAS  Google Scholar 

  82. Khanal, S.K., Chen, W.H., Li, L., et al. 2004. Biological hydrogen production: effects of pH and intermediate products. International Journal of Hydrogen Energy 29: 1123–1131.

    CAS  Google Scholar 

  83. Li, C. and Fang, H.H. 2007. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology 37: 1–39.

    Google Scholar 

  84. Luo, G., Karakashev, D., Xie, L., et al. 2011. Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnology and Bioengineering 108: 1816–1827.

    CAS  Google Scholar 

  85. Wang, J. and Wan, W. 2009. Factors influencing fermentative hydrogen production: a review. International Journal of Hydrogen Energy 34: 799–811.

    CAS  Google Scholar 

  86. De Gioannis, G., Friargiu, M., Massi, E., et al. 2014. Biohydrogen production from dark fermentation of cheese whey: Influence of pH. International Journal of Hydrogen Energy 39: 20930–20941.

    Google Scholar 

  87. Kongjan, P. and Angelidaki, I. 2010. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Bioresource Technology 101: 7789–7796.

    CAS  Google Scholar 

  88. Valdez-Vazquez, I., Rios-Leal, E., Esparza-Garcia, F., et al. 2005. Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: mesophilic versus thermophilic regime. International Journal of Hydrogen Energy 30: 1383–1391.

    CAS  Google Scholar 

  89. Jarunglumlert, T., Prommuak, C., Putmai, N., et al. 2018. Scaling-up bio-hydrogen production from food waste: feasibilities and challenges. International Journal of Hydrogen Energy 43: 634–648.

    CAS  Google Scholar 

  90. Kim, J.K., Oh, B.R., Chun, Y.N., et al. 2006. Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. Journal of Bioscience and Bioengineering 102: 328–332.

    CAS  Google Scholar 

  91. Velvizhi, G. 2019. Overview of bioelectrochemical treatment systems for wastewater remediation. Microbial electrochemical technology, 587–612. Amsterdam: Elsevier.

    Google Scholar 

  92. Kim, M.S., Cha, J. and Kim, D.H. 2013. Fermentative biohydrogen production from solid wastes. Biohydrogen, 259–283. Amsterdam: Elsevier.

    Google Scholar 

  93. Zhang, Z.P., Show, K.Y., Tay, J.H., et al. 2006. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochemistry 41: 2118–2123.

    CAS  Google Scholar 

  94. Pakarinen, O., Kaparaju, P. and Rintala, J. 2011. The effect of organic loading rate and retention time on hydrogen production from a methanogenic CSTR. Bioresource technology 102: 8952–8957.

    CAS  Google Scholar 

  95. Liu, D., Zeng, R.J. and Angelidaki, I. 2008. Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70° C). Biotechnology and Bioengineering 100: 1108–1114.

    CAS  Google Scholar 

  96. Sreethawong, T., Chatsiriwatana, S., Rangsunvigit, P., et al. 2010. Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: effects of operational parameters, COD: N ratio, and organic acid composition. International Journal of Hydrogen Energy 35: 4092–4102.

    CAS  Google Scholar 

  97. Sreethawong, T., Niyamapa, T., et al. 2010. Hydrogen production from glucose-containing wastewater using an anaerobic sequencing batch reactor: Effects of COD loading rate, nitrogen content, and organic acid composition. Chemical Engineering Journal 160: 322–332.

    CAS  Google Scholar 

  98. Júnior, A.D.N.F., Wenzel, J., Etchebehere, C., et al. 2014. Effect of organic loading rate on hydrogen production from sugarcane vinasse in thermophilic acidogenic packed bed reactors. International Journal of Hydrogen Energy 39: 16852–16862.

    Google Scholar 

  99. Kumar, N. and Das, D. 2000. Enhancement of hydrogen production by Enterobacter cloacae IIT-BT 08. Process Biochemistry 35: 589–593.

    CAS  Google Scholar 

  100. Ginkel, S.V., Sung, S. and Lay, J.J. 2001. Biohydrogen production as a function of pH and substrate concentration. Environmental Science and Technology 35: 4726–4730.

    CAS  Google Scholar 

  101. Fabiano, B. and Perego, P. 2002. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes. International Journal of Hydrogen Energy 27: 149–156.

    CAS  Google Scholar 

  102. Chin, H.L., Chen, Z.S. and Chou, C.P. 2003. Fedbatch operation using Clostridium acetobutylicum suspension culture as biocatalyst for enhancing hydrogen production. Biotechnology Progress 19: 383–388.

    CAS  Google Scholar 

  103. Ogino, H., Miura, T., Ishimi, K., et al. 2005. Hydrogen production from glucose by anaerobes. Biotechnology Progress 21: 1786–1788.

    CAS  Google Scholar 

  104. Chen, W.H., Chen, S.Y., Khanal, S.K., et al. 2006. Kinetic study of biological hydrogen production by anaerobic fermentation. International Journal of Hydrogen Energy 31: 2170–2178.

    CAS  Google Scholar 

  105. Zhang, H., Bruns, M.A. and Logan, B.E. 2006. Biological hydrogen production by Clostridium acetobutylicum in an unsaturated flow reactor. Water Research 40: 728–734.

    CAS  Google Scholar 

  106. Lin, C.Y. and Cheng, C.H. 2006. Fermentative hydrogen production from xylose using anaerobic mixed microflora. International Journal of Hydrogen Energy 31: 832–840.

    CAS  Google Scholar 

  107. Chen, S.D., Sheu, D.S., Chen, W.M., et al. 2007. Dark hydrogen fermentation from hydrolyzed starch treated with recombinant amylase originating from Caldimonastaiwanensis. Biotechnology Progress 23: 1312–1320.

    CAS  Google Scholar 

  108. Zheng, H., Zeng, R.J. and Angelidaki, I. 2008. Biohydrogen production from glucose in upflow biofilm reactors with plastic carriers under extreme thermophilic conditions (70 °C). Biotechnology and Bioengineering 100: 1034–1038.

    CAS  Google Scholar 

  109. Lo, Y.C., Chen, W.M., Hung, C.H., et al. 2008. Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Water Research 42: 827–842.

    CAS  Google Scholar 

  110. Asadi, N., Karimi A.M. and Zilouei, H. 2018. Biological hydrogen production by Enterobacter aerogenes: Structural analysis of treated rice straw and effect of substrate concentration. International Journal of Hydrogen Energy 43: 8718–8728. https://doi.org/10.1016/j.ijhydene.2018.03.137.

    Article  CAS  Google Scholar 

  111. Valdez-Vazquez, I., Castillo-Rubio, L.G., Pérez-Rangel, M., et al. 2019. Enhanced hydrogen production from lignocellulosic substrates via bioaugmentation with Clostridium strains. Industrial Crops and Products 137: 105–111.

    CAS  Google Scholar 

  112. Mahata, C., Ray, S., and Das, D. 2020. Optimization of dark fermentative hydrogen production from organic wastes using acidogenic mixed consortia. Energy Conversion and Management 219: 113047. https://doi.org/10.1016/j.enconman.2020.113047.

    Article  CAS  Google Scholar 

  113. Alvarez, R. and Liden, G. 2008. Semi-continuous co-digestion of solid slaughterhouse waste, manure, and fruit and vegetable waste. Renewable Energy 33: 726–734.

    CAS  Google Scholar 

  114. Tang, G.-L., Huang, J., Sun, Z.-J., et al. 2008. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. Journal of Bioscience and Bioengineering 106: 80–87.

    CAS  Google Scholar 

  115. Favaro, L., Alibardi, L., Lavagnolo, M.C., et al. 2013. Effects of inoculum and indigenous microflora on hydrogen production from the organic fraction of municipal solid waste. International Journal of Hydrogen Energy 38: 11774–11779.

    CAS  Google Scholar 

  116. Kim, D.H., Kim, S.H. and Shin, H.S. 2009. Hydrogen fermentation of food waste without inoculum addition. Enzyme and Microbial Technology 45: 181–187.

    CAS  Google Scholar 

  117. Wang, J. and Wan, W. 2008. Effect of Fe2+ concentration on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy 33: 1215–1220.

    CAS  Google Scholar 

  118. Elreedy, A., Fujii, M., Koyama, M., et al. 2019. Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles. Water Research 151: 349–361. https://doi.org/10.1016/j.watres.2018.12.043.

    Article  CAS  Google Scholar 

  119. Lay, J.J., Fan, K.S., Hwang, J.I., et al. 2005. Factors affecting hydrogen production from food wastes by Clostridium-rich composts. Journal of Environmental Engineering 131: 595–602.

    CAS  Google Scholar 

  120. Bisaillon, A., Turcot, J. and Hallenbeck, P.C. 2006. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. International Journal of Hydrogen Energy 31: 1504–1508.

    CAS  Google Scholar 

  121. Sivagurunathan, P., Kumar, G., Mudhoo, A. et al. 2017. Fermentative hydrogen production using lignocellulose biomass: an overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renewable and Sustainable Energy Reviews 77: 28–42. https://doi.org/10.1016/j.rser.2017.03.091.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Devi Ahilya Vishwa Vidyalaya, Indore, and University of Petroleum and Energy Studies (UPES), Dehradun, for providing the support to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khushboo Swapnil Bhurat.

Ethics declarations

Conflict of interest

All the authors of this manuscript have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhurat, K.S., Banerjee, T., Pandey, J.K. et al. Fermentative bio-hydrogen production using lignocellulosic waste biomass: a review. Waste Dispos. Sustain. Energy 2, 249–264 (2020). https://doi.org/10.1007/s42768-020-00054-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42768-020-00054-9

Keywords

Navigation