Skip to main content
Log in

Nonlinear buckling analysis of double-layered graphene nanoribbons based on molecular mechanics

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Double-layer graphene nanoribbons promise potential application in nanoelectromechanical systems and optoelectronic devices, and knowledge about mechanical stability is a crucial parameter to flourish the application of these materials at the next generation of nanodevices. In this paper, molecular mechanics is utilized to investigate nonlinear buckling behavior, critical buckling stress, and lateral deflection of double-layered graphene nanoribbons under various configurations of stacking mode and chirality. The implicit arc-length iterative method (modified Riks method) with Ramm’s algorithm is utilized to analyze the nonlinear structural stability problem. The covalent bonds are modeled using three-dimensional beam elements in which elastic moduli are calculated based on molecular structural mechanics technique, and the interlayer van der Waals (vdW) interactions are modeled with nonlinear truss elements. An analytical expression for Young’s modulus of nonlinear truss elements is derived based on the Lennard–Jones potential function and implemented in numerical simulation with a UMAT subroutine based on FORTRAN code to capture the nonlinearity of the vdW interactions during the buckling analysis. The results indicate that the highest critical buckling stress and the minimum lateral deflection occur for armchair and zigzag chirality, both with AB stacking mode, respectively. Moreover, the critical buckling stress is found to be directly dependent on the mode shape number regardless of in-phase or anti-phase deflection direction of layers. Lateral deflection exhibits a similar trend with mode shape in anti-phase mode; however, it is decreasing by increasing mode shape number in in-phase mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Prabhu SA, Kavithayeni V, Suganthy R, Geetha K (2020) Graphene quantum dots synthesis and energy application: a review. Carbon Lett. https://doi.org/10.1007/s42823-020-00154-w

  2. Sahoo SK, Mallik A (2019) Fundamentals of fascinating graphene nanosheets: a comprehensive study. Nano 14(3):1930003. https://doi.org/10.1142/S1793292019300032

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    Article  CAS  Google Scholar 

  4. Jung HY, Kim YR, Jeong HT (2020) All-solid-state supercapacitor composed of reduced graphene oxide (rGO)/activated carbon (AC) composite and polymer electrolyte. Carbon Lett 30(1):107–113

    Article  Google Scholar 

  5. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  Google Scholar 

  6. Ebrahimi F, Dabbagh A (2018) Effect of humid-thermal environment on wave dispersion characteristics of single-layered graphene sheets. Appl Phys A 124(4):301

    Article  CAS  Google Scholar 

  7. Reunchan P, Jhi S-H (2011) Metal-dispersed porous graphene for hydrogen storage. Appl Phys Lett 98(9):093103

    Article  CAS  Google Scholar 

  8. Kim G, Jhi S-H, Lim S, Park N (2009) Effect of vacancy defects in graphene on metal anchoring and hydrogen adsorption. Appl Phys Lett 94(17):173102

    Article  CAS  Google Scholar 

  9. Dai G, Liu J, Qian H (2019) CO catalytic oxidation over graphene with double vacancy-embedded molybdenum: a DFT investigation. Carbon Lett 29(4):337–344

    Article  Google Scholar 

  10. Li J, Li J, Zhang H, Li T, Xiao J (2020) Structural characteristics and sodium penetration behaviors in anthracite cathodes: a combination study using Monte Carlo and molecular dynamics simulations. Carbon Lett 30(3):259–269

    Article  Google Scholar 

  11. Nguyen HT (2019) Graphene layer of hybrid graphene/hexagonal boron nitride model upon heating. Carbon Lett 29(5):521–528

    Article  Google Scholar 

  12. Galashev AY, Katin KP, Maslov MM (2019) Morse parameters for the interaction of metals with graphene and silicene. Phys Lett A 383(2–3):252–258

    Article  CAS  Google Scholar 

  13. Gajbhiye SO, Singh S (2016) Nonlinear dynamics of bi-layered graphene sheet, double-walled carbon nanotube and nanotube bundle. Appl Phys A 122(5):523

    Article  CAS  Google Scholar 

  14. Overney G, Zhong W, Tomanek D (1993) Structural rigidity and low frequency vibrational modes of long carbon tubules. Zeitschrift für Physik D Atoms Mol Clust 27(1):93–96

    Article  CAS  Google Scholar 

  15. Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79(7):1297

    Article  CAS  Google Scholar 

  16. Kamali K, Nazemnezhad R (2018) Interlayer influences between double-layer graphene nanoribbons (shear and tensile-compressive) on free vibration using nonlocal elasticity theory. Mech Adv Mater Struct 25(3):225–237

    Article  CAS  Google Scholar 

  17. Hosseini-Hashemi S, Sharifpour F, Ilkhani M (2016) On the free vibrations of size-dependent closed micro/nano-spherical shell based on the modified couple stress theory. Int J Mech Sci. 115:501–515

    Article  Google Scholar 

  18. Javanbakht M, Ghaedi MS (2020) Nanovoid induced martensitic growth under uniaxial stress: effect of misfit strain, temperature and nanovoid size on PT threshold stress and nanostructure in NiAl. Comput Mater Sci 184:109928

    Article  CAS  Google Scholar 

  19. Levitas VI, Jafarzadeh H, Farrahi GH, Javanbakht M (2018) Thermodynamically consistent and scale-dependent phase field approach for crack propagation allowing for surface stresses. Int J Plast 111:1–35

    Article  Google Scholar 

  20. Jafarzadeh H, Levitas VI, Farrahi GH, Javanbakht M (2019) Phase field approach for nanoscale interactions between crack propagation and phase transformation. Nanoscale 11(46):22243–22247

    Article  CAS  Google Scholar 

  21. Auffray N, dell’Isola F, Eremeyev VA, Madeo A, Rosi G (2015) Analytical continuum mechanics à la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math Mech Solids 20(4):375–417

    Article  Google Scholar 

  22. Abali BE, Müller WH, dell’Isola F (2017) Theory and computation of higher gradient elasticity theories based on action principles. Arch Appl Mech 87(9):1495–1510

    Article  Google Scholar 

  23. dell’Isola F, Seppecher P, Spagnuolo M, Barchiesi E, Hild F, Lekszycki T et al (2019) Advances in pantographic structures: design, manufacturing, models, experiments and image analyses. Continuum Mech Thermodyn 31(4):1231–1282

    Article  CAS  Google Scholar 

  24. Dell’Isola F, Seppecher P, Alibert JJ, Lekszycki T, Grygoruk R, Pawlikowski M et al (2019) Pantographic metamaterials: an example of mathematically driven design and of its technological challenges. Continuum Mech Thermodyn 31(4):851–884

    Article  Google Scholar 

  25. Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41(3–5):305–312

    Article  Google Scholar 

  26. Duan W, Wang CM (2007) Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18(38):385704

    Article  Google Scholar 

  27. Pradhan S, Phadikar J (2010) Scale effect and buckling analysis of multilayered graphene sheets based on nonlocal continuum mechanics. J Comput Theor Nanosci 7(10):1948–1954

    Article  CAS  Google Scholar 

  28. Ansari R, Shahabodini A, Rouhi H (2013) Prediction of the biaxial buckling and vibration behavior of graphene via a nonlocal atomistic-based plate theory. Compos Struct 95:88–94

    Article  Google Scholar 

  29. Ansari R, Shahabodini A, Rouhi H (2015) A nonlocal plate model incorporating interatomic potentials for vibrations of graphene with arbitrary edge conditions. Curr Appl Phys 15(9):1062–1069

    Article  Google Scholar 

  30. Jiang RW, Shen ZB, Tang GJ (2017) A semi-analytical method for nonlocal buckling and vibration of a single-layered graphene sheet nanomechanical resonator subjected to initial in-plane loads. Acta Mech 228(5):1725–1734

    Article  Google Scholar 

  31. Shahabodini A, Ansari R, Darvizeh M (2017) Multiscale modeling of embedded graphene sheets based on the higher-order Cauchy-Born rule: nonlinear static analysis. Compos Struct 165:25–43

    Article  Google Scholar 

  32. Lin F, Xiang Y, Shen H-S (2015) Buckling of graphene embedded in polymer matrix under compression. Int J Struct Stab Dyn 15(07):1540016

    Article  Google Scholar 

  33. Hwu C, Yeh Y-K (2014) Explicit expressions of mechanical properties for graphene sheets and carbon nanotubes via a molecular-continuum model. Appl Phys A 116(1):125–140

    Article  CAS  Google Scholar 

  34. Chang I-L, Chen J-A (2015) The molecular mechanics study on mechanical properties of graphene and graphite. Appl Phys A 119(1):265–274

    Article  CAS  Google Scholar 

  35. Alizadeh O, Mohammadi S (2019) The variable node multiscale approach: coupling the atomistic and continuum scales. Comput Mater Sci 160:256–274

    Article  CAS  Google Scholar 

  36. Turco E, Dell’Isola F, Cazzani A, Rizzi NL (2016) Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z Angew Math Phys 67(4):85

    Article  Google Scholar 

  37. Rahali Y, Giorgio I, Ganghoffer J, dell’Isola F (2015) Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int J Eng Sci 97:148–172

    Article  Google Scholar 

  38. Giorgio I, Rizzi NL, Andreaus U, Steigmann DJ (2019) A two-dimensional continuum model of pantographic sheets moving in a 3D space and accounting for the offset and relative rotations of the fibers. Math Mech Complex Syst 7(4):311–325

    Article  Google Scholar 

  39. Giorgio I, Rizzi N, Turco E (2017) Continuum modelling of pantographic sheets for out-of-plane bifurcation and vibrational analysis. Proc R Soc A Math Phys Eng Sci 473(2207):20170636

    Google Scholar 

  40. Giorgio I, Della Corte A, Dell’Isola F, Steigmann DJ (2016) Buckling modes in pantographic lattices. CR Mec 344(7):487–501

    Article  Google Scholar 

  41. Dell’Isola F, Della Corte A, Greco L, Luongo A (2016) Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a perturbation solution. Int J Solids Struct 81:1–12

    Article  Google Scholar 

  42. Tserpes KI, Papanikos P (2014) Finite element modeling of the tensile behavior of carbon nanotubes, graphene and their composites Modeling of carbon nanotubes, graphene and their composites. Springer, Berlin, pp 303–329

    Book  Google Scholar 

  43. Giannopoulos G, Tsiros A, Georgantzinos S (2013) Prediction of elastic mechanical behavior and stability of single-walled carbon nanotubes using bar elements. Mech Adv Mater Struct 20(9):730–741

    Article  CAS  Google Scholar 

  44. Allinger NL, Yuh YH, Lii JH (1989) Molecular mechanics. The MM3 force field for hydrocarbons. J Am Chem Soc 111(23):8551–8566

    Article  CAS  Google Scholar 

  45. Korobeynikov S, Alyokhin V, Babichev A (2018) Simulation of mechanical parameters of graphene using the DREIDING force field. Acta Mech 229(6):2343–2378

    Article  Google Scholar 

  46. Mayo SL, Olafson BD, Goddard WA (1990) DREIDING: a generic force field for molecular simulations. J Phys Chem 94(26):8897–8909

    Article  CAS  Google Scholar 

  47. Turco E, Barchiesi E, Giorgio I, dell’Isola F (2020) A Lagrangian Hencky-type nonlinear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory. Int J Nonlinear Mech 123:103481

    Article  Google Scholar 

  48. Turco E, Barchiesi E (2019) Equilibrium paths of Hencky pantographic beams in a three-point bending problem. Math Mech Complex Syst 7(4):287–310

    Article  Google Scholar 

  49. Turco E (2018) In-plane shear loading of granular membranes modeled as a Lagrangian assembly of rotating elastic particles. Mech Res Commun 92:61–66

    Article  Google Scholar 

  50. Meo M, Rossi M (2006) Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modelling. Compos Sci Technol 66(11–12):1597–1605

    Article  CAS  Google Scholar 

  51. Tserpes K, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Compos B Eng 36(5):468–477

    Article  CAS  Google Scholar 

  52. Li C, Chou T-W (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40(10):2487–2499

    Article  Google Scholar 

  53. Li C, Chou T-W (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63(11):1517–1524

    Article  CAS  Google Scholar 

  54. Huang M-Y, Chen H-B, Lu J-N, Lu P, Zhang P-Q (2013) A modified molecular structural mechanics method for analysis of carbon nanotubes. Chin J Chem Phys. 19(4):286

    Article  CAS  Google Scholar 

  55. Eberhardt O, Wallmersperger T (2015) Energy consistent modified molecular structural mechanics model for the determination of the elastic properties of single wall carbon nanotubes. Carbon 95:166–180

    Article  CAS  Google Scholar 

  56. Singh S, Patel B (2015) Nonlinear elastic properties of graphene sheet under finite deformation. Compos Struct 119:412–421

    Article  Google Scholar 

  57. Kumar A, Sharma K, Dixit AR (2020) A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. https://doi.org/10.1007/s42823-020-00161-x

  58. Zhang X, Dong J, Gong X, Ding F (2018) The formation and stability of junctions in single-wall carbon nanotubes. Nanotechnology 29(48):485702

    Article  CAS  Google Scholar 

  59. Shende P, Augustine S, Prabhakar B (2020) A review on graphene nanoribbons for advanced biomedical applications. Carbon Lett. 30:465–475. https://doi.org/10.1007/s42823-020-00125-1

    Article  Google Scholar 

  60. Genoese A, Genoese A, Salerno G (2020) Buckling and post-buckling analysis of single wall carbon nanotubes using molecular mechanics. Appl Math Model 83:777–800

    Article  Google Scholar 

  61. Genoese A, Genoese A, Rizzi NL, Salerno G (2019) On the in-plane failure and post-failure behaviour of pristine and perforated single-layer graphene sheets. Math Mech Solids 24(11):3418–3443

    Article  Google Scholar 

  62. Eremeyev VA, Turco E (2020) Enriched buckling for beam-lattice metamaterials. Mech Res Commun 103:103458

    Article  Google Scholar 

  63. Parashar A, Mertiny P (2012) Representative volume element to estimate buckling behavior of graphene/polymer nanocomposite. Nanoscale Res Lett 7(1):515

    Article  Google Scholar 

  64. Rouhi S, Ansari R (2012) Atomistic finite element model for axial buckling and vibration analysis of single-layered graphene sheets. Phys E 44(4):764–772

    Article  CAS  Google Scholar 

  65. Tserpes K, Vatistas I (2015) Buckling analysis of pristine and defected graphene. Mech Res Commun 64:50–56

    Article  Google Scholar 

  66. Jung MW, Myung S, Kim KW, Song W, Jo Y-Y, Lee SS et al (2014) Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method. Nanotechnology 25(28):285302

    Article  CAS  Google Scholar 

  67. Yu X, Cheng H, Zhang M, Zhao Y, Qu L, Shi G (2017) Graphene-based smart materials. Nat Rev Mater 2(9):17046

    Article  CAS  Google Scholar 

  68. Sheng Y, Rong Y, He Z, Fan Y, Warner JH (2015) Uniformity of large-area bilayer graphene grown by chemical vapor deposition. Nanotechnology 26(39):395601

    Article  CAS  Google Scholar 

  69. Rafiee MA, Lu W, Thomas AV, Zandiatashbar A, Rafiee J, Tour JM et al (2010) Graphene nanoribbon composites. ACS Nano 4(12):7415–7420

    Article  CAS  Google Scholar 

  70. Neek-Amal M, Peeters F (2010) Defected graphene nanoribbons under axial compression. Appl Phys Lett 97(15):153118

    Article  CAS  Google Scholar 

  71. Shi J-X, Ni Q-Q, Lei X-W, Natsuki T (2011) Nonlocal elasticity theory for the buckling of double-layer graphene nanoribbons based on a continuum model. Comput Mater Sci 50(11):3085–3090

    Article  CAS  Google Scholar 

  72. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR et al (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  CAS  Google Scholar 

  73. Leenaerts O, Partoens B, Peeters F (2013) Tunable double dirac cone spectrum in bilayer α-graphyne. Appl Phys Lett 103(1):013105

    Article  CAS  Google Scholar 

  74. Rafiee R, Eskandariyun A (2017) Comparative study on predicting Young’s modulus of graphene sheets using nano-scale continuum mechanics approach. Phys E 90:42–48

    Article  CAS  Google Scholar 

  75. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM et al (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117(19):5179–5197

    Article  CAS  Google Scholar 

  76. Nye JF (1985) Physical properties of crystals: their representation by tensors and matrices. Oxford University Press, Oxford

    Google Scholar 

  77. Kim JH, Jeong JH, Kim N, Joshi R, Lee G-H (2018) Mechanical properties of two-dimensional materials and their applications. J Phys D Appl Phys 52(8):083001

    Article  CAS  Google Scholar 

  78. Wan K-T, Guo S, Dillard DA (2003) A theoretical and numerical study of a thin clamped circular film under an external load in the presence of a tensile residual stress. Thin Solid Films 425(1–2):150–162

    Article  CAS  Google Scholar 

  79. Blakslee O, Proctor D, Seldin E, Spence G, Weng T (1970) Elastic constants of compression-annealed pyrolytic graphite. J Appl Phys 41(8):3373–3382

    Article  CAS  Google Scholar 

  80. Kordkheili SH, Moshrefzadeh-Sani H (2013) Mechanical properties of double-layered graphene sheets. Comput Mater Sci 69:335–343

    Article  CAS  Google Scholar 

  81. Saito R, Matsuo R, Kimura T, Dresselhaus G, Dresselhaus M (2001) Anomalous potential barrier of double-wall carbon nanotube. Chem Phys Lett 348(3–4):187–193

    Article  CAS  Google Scholar 

  82. Scarpa F, Adhikari S, Chowdhury R (2010) The transverse elasticity of bilayer graphene. Phys Lett A 374(19–20):2053–2057

    Article  CAS  Google Scholar 

  83. Namnabat MS, Barzegar A, Javanbakht M (2019) Finite element buckling analysis of double-layered graphene nanoribbons. Mater Res Express 6(5):055023

    Article  CAS  Google Scholar 

  84. ABAQUS IJV (2014) Abaqus documentation, vol 6, pp 5–1

  85. Krenk S (2009) Nonlinear modeling and analysis of solids and structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  86. Hang Y, Wen-Zhi W, Yu J, Guo W-L (2015) Tuning the energy gap of bilayer α-graphyne by applying strain and electric field. Chin Phys B 25(2):023102

    Article  CAS  Google Scholar 

  87. Farajpour A, Solghar AA, Shahidi A (2013) Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression. Phys E 47:197–206

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Javanbakht.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namnabat, M.S., Barzegar, A., Barchiesi, E. et al. Nonlinear buckling analysis of double-layered graphene nanoribbons based on molecular mechanics. Carbon Lett. 31, 895–910 (2021). https://doi.org/10.1007/s42823-020-00194-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00194-2

Keywords

Navigation