Skip to main content
Log in

Preparation of activated carbon spheres and their electrochemical properties as supercapacitor electrode

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The carbon spheres (CSs) synthesized by an ultrasonic-spray pyrolysis method were activated for supercapacitor electrode. There are plenty of cracks on the surface of the activated carbon spheres (ACSs), which expend with increasing the activation temperature and activator dosage. The specific capacitance of ACSs increases with the activation temperature and activator dosage and reach to maximal value at certain conditions. Importantly, the ACS sample activated at relatively low activation temperature (600 °C) and 7 of mass ratio of KOH to CSs has the highest specific capacitance (about 209 F g−1 at 50 mA g−1 of current density) and indicates the excellent cycling stability after 1000 consecutive charge–discharge cycles. Furthermore, the graphene sheets could be found in the samples that were activated at 1000 °C. And the electrode prepared by the sample has the very low series resistance because of the excellent conductivity of the formed graphene sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38(9):2520. https://doi.org/10.1039/b813846j

    Article  CAS  Google Scholar 

  2. Jing M, Hou H, Yang Y, Zhu Y, Wu Z, Ji X (2015) Electrochemically alternating voltage tuned Co2MnO4/Co hydroxide chloride for an asymmetric supercapacitor. Electrochim Acta 165:198. https://doi.org/10.1016/j.electacta.2015.03.032

    Article  CAS  Google Scholar 

  3. Yu M, Teng Z, Lu X, Chen X, Xie S, Wei L, Liang C, Zhao W, Zhang L, Tong Y (2013) Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors. J Power Sources 239:64. https://doi.org/10.1016/j.jpowsour.2013.03.083

    Article  CAS  Google Scholar 

  4. Zhang L, Zhang F, Yang X, Leng K, Huang Y, Chen Y (2013) High-performance supercapacitor electrode materials prepared from various pollens. Small 9(8):1342. https://doi.org/10.1002/smll.201202943

    Article  CAS  Google Scholar 

  5. Wang Q, Yan J, Fan Z (2016) Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy Environ Sci 9(3):729. https://doi.org/10.1039/c5ee03109e

    Article  CAS  Google Scholar 

  6. Li YF, Liu YZ, Zhang WK, Guo CY, Chen CM (2015) Green synthesis of reduced graphene oxide paper using Zn powder for supercapacitors. Mater Lett 157:273. https://doi.org/10.1016/j.matlet.2015.05.114

    Article  CAS  Google Scholar 

  7. Sun W, Lipka SM, Swartz C, Williams D, Yang F (2016) Hemp-derived activated carbons for supercapacitors. Carbon 103:181. https://doi.org/10.1016/j.carbon.2016.02.090

    Article  CAS  Google Scholar 

  8. Xie QX, Bao RR, Zheng AR, Zhang YF, Wu SH, Xie C, Zhao P (2016) Sustainable low-cost green electrodes with high volumetric capacitance for aqueous symmetric supercapacitors with high energy density. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.5b01417

    Article  Google Scholar 

  9. Liu B, Yao H, Daniels RA, Song W, Zheng H, Jin L, Suib SL, He J (2016) A facile synthesis of Fe3C@mesoporous carbon nitride nanospheres with superior electrocatalytic activity. Nanoscale 8(10):5441. https://doi.org/10.1039/c6nr00604c

    Article  CAS  Google Scholar 

  10. Lin T, Chen I-W, Liu F, Yang C, Bi H, Xu F, Huang F (2015) Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350(6267):1508. https://doi.org/10.1126/science.aab3798

    Article  CAS  Google Scholar 

  11. Chmiola J, Largeot C, Taberna PL, Simon P, Gogotsi Y (2010) Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328(5977):480. https://doi.org/10.1126/science.1184126

    Article  CAS  Google Scholar 

  12. Oschatz M, Pré P, Drfler S, Nickel W, Kaskel S (2016) Nanostructure characterization of carbide-derived carbons by morphological analysis of transmission electron microscopy images combined with physisorption and Raman spectroscopy. Carbon 105:314. https://doi.org/10.1016/j.carbon.2016.04.041

    Article  CAS  Google Scholar 

  13. Shi K, Ren M, Zhitomirsky I (2014) Activated carbon-coated carbon nanotubes for energy storage in supercapacitors and capacitive water purification. Acs Sustain Chem Eng 2(5):1289. https://doi.org/10.1021/sc500118r

    Article  CAS  Google Scholar 

  14. Lee B, Lee C, Liu T, Eom K, Chen Z, Noda S, Fuller TF, Jang HD, Lee SW (2016) Hierarchical networks of redox-active reduced crumpled graphene oxide and functionalized few-walled carbon nanotubes for rapid electrochemical energy storage. Nanoscale 8(24):12330. https://doi.org/10.1039/c6nr02013e

    Article  CAS  Google Scholar 

  15. Xu W, Dai S, Liu G, Yi X, Xue W (2016) CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors. Electrochim Acta 203:1. https://doi.org/10.1016/j.electacta.2016.03.170

    Article  CAS  Google Scholar 

  16. Nagaraju G, Ko YH, Cha SM, Sang HI, Yu JS (2016) A facile one-step approach to hierarchically assembled core–shell-like MnO2@MnO2 nanoarchitectures on carbon fibers: an efficient and flexible electrode material to enhance energy storage. Nano Res. https://doi.org/10.1007/s12274-016-1047-4

    Article  Google Scholar 

  17. Huan L, Ying T, Xiaoyu Z, Zhengjie D, Liu Z (2015) Compressed porous graphene particles for use as supercapacitor electrodes with excellent volumetric performance. Nanoscale. https://doi.org/10.1039/c5nr06113j

    Article  Google Scholar 

  18. Zhang Y, Tao B, Xing W, Zhang L, Yan ZF (2015) Sandwich-like nitrogen-doped porous carbon/graphene nanoflakes with high-rate capacitive performance. Nanoscale 8(15):7889. https://doi.org/10.1039/c5nr05151g

    Article  Google Scholar 

  19. Wickramaratne NP, Jaroniec M (2013) Activated carbon spheres for CO2 adsorption. ACS Appl Mater Interfaces 5(5):1849. https://doi.org/10.1021/am400112m

    Article  CAS  Google Scholar 

  20. Zhongguan L, Luomeng Z, Hao L, Jianping Z, Jianfei Z (2019) Formation of monodisperse carbon spheres with tunable size via triblock copolymer-assisted synthesis and their capacitor properties. Nanoscale Res Lett. https://doi.org/10.1186/s11671-019-2952-8

    Article  Google Scholar 

  21. Jin Y, Tian K, Lu W, Zhang X, Xin G (2016) Hierarchical porous microspheres of activated carbon with a high surface area from spores for electrochemical double-layer capacitors. J Mater Chem A 4(41):15968. https://doi.org/10.1039/c6ta05872h

    Article  CAS  Google Scholar 

  22. Fan Y, Yang X, Zhu B, Liu PF, Lu HT (2014) Micro-mesoporous carbon spheres derived from carrageenan as electrode material for supercapacitors. J Power Sources 268:584. https://doi.org/10.1016/j.jpowsour.2014.06.100

    Article  CAS  Google Scholar 

  23. Li F, Chi W, Shen Z, Wu Y, Liu Y, Liu H (2010) Activation of mesocarbon microbeads with different textures and their application for supercapacitor. Fuel Process Technol 91(1):17. https://doi.org/10.1016/j.fuproc.2009.08.020

    Article  CAS  Google Scholar 

  24. Ma F, Song S, Wu G, Ma D, Geng W, Wan J (2015) Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J Mater Chem A 3(35):18154. https://doi.org/10.1039/c5ta04721h

    Article  Google Scholar 

  25. Niu J, Liang J, Shao R, Liu M, Dou M, Li Z, Huang Y, Wang F (2017) Tremella-like N, O-codoped hierarchically porous carbon nanosheets as high-performance anode materials for high energy and ultrafast Na-ion capacitors. Nano Energy 41:285. https://doi.org/10.1016/j.nanoen.2017.09.041

    Article  CAS  Google Scholar 

  26. Qian W, Yan J, Wang Y, Tong W, Fan Z (2014) Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon 67(2):119. https://doi.org/10.1016/j.carbon.2013.09.070

    Article  CAS  Google Scholar 

  27. Wang X, Zhou H, Sheridan E, Walmsley JC, Ren D, Chen D (2016) Geometrically confined favourable ion packing for high gravimetric capacitance in carbon–ionic liquid supercapacitors. Energy Environ Sci 9(1):232. https://doi.org/10.1039/c5ee02702k

    Article  CAS  Google Scholar 

  28. Ma F, Ding S, Ren H, Liu Y (2019) Sakura-based activated carbon preparation and its performance in supercapacitor applications. RSC Adv 9(5):2474. https://doi.org/10.1039/c8ra09685f

    Article  CAS  Google Scholar 

  29. Mondal AK, Kretschmer K, Zhao Y, Liu H, Fan H, Wang G (2017) Naturally nitrogen doped porous carbon derived from waste shrimp shells for high-performance lithium ion batteries and supercapacitors. Microporous Mesoporous Mater 246:72. https://doi.org/10.1016/j.micromeso.2017.03.019

    Article  CAS  Google Scholar 

  30. Chen L, Ji T, Mu L, Zhu J (2017) Cotton fabric derived hierarchically porous carbon and nitrogen doping for sustainable capacitor electrode. Carbon 111:839. https://doi.org/10.1016/j.carbon.2016.10.054

    Article  CAS  Google Scholar 

  31. Li Y, Wang G, Wei T, Fan Z, Yan P (2016) Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19:165. https://doi.org/10.1016/j.nanoen.2015.10.038

    Article  CAS  Google Scholar 

  32. Wang K, Zhao N, Lei SW, Yan R, Tian XD, Wang JZ, Song Y, Xu DF, Guo QG, Liu L (2015) Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors. Electrochim Acta 166:1. https://doi.org/10.1016/j.electacta.2015.03.048

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunfang Liu or Qiong Wan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 12078 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Xing, G., Wang, J. et al. Preparation of activated carbon spheres and their electrochemical properties as supercapacitor electrode. Carbon Lett. 31, 667–676 (2021). https://doi.org/10.1007/s42823-021-00241-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-021-00241-6

Keywords

Navigation