Skip to main content

Advertisement

Log in

Identifying the potential global distribution and conservation areas for Terminalia chebula, an important medicinal tree species under changing climate scenario

  • Research Article
  • Published:
Tropical Ecology Aims and scope Submit manuscript

Abstract

Terminalia chebula Retz. (Combretaceae), commonly-known as chebulic myrobalan is one of the important Non-Timber Forest Product (NTFP) species which is harvested for its fruits and galls. The species known as the “King of medicines” is used widely in Ayurveda, Sidda, Unani, and traditional Chinese medicines for curing a wide variety of diseases in Asia and Africa. Terminalia chebula is an important ingredient of Triphala (Ayurvedic medicine) along with Terminalia bellirica and Phyllanthus emblica. The fruits of the tree also yields a dye which is used as an organic dye in the textile industries. In recent years, there is an increasing demand for herbal remedies and organic dyes, resulting in extensive extraction of fruits and galls from T. chebula. In this study, the major objective was to identify sites for the conservation of T. chebula and to identify important environmental variables determining its distribution. Based on the existing species distribution records (primary and secondary), along with a suite of climatic variables, the present and future distribution of the species were predicted. The study identified ecological niches that are suitable for the cultivation of the species; the species occurs in India, Pakistan, Sri Lanka, Cambodia, Myanmar, Vietnam, China, Laos, Thailand, Bhutan, Taiwan, Nepal and Bangladesh under the current climatic scenario. Within India, our results suggest that the central and south India are highly suitable in the current scenario. The mean annual temperature, temperature seasonality and isothermality seem to be the most important variables determining the distribution of the species which is directly influenced by climate change. Overall, the study indicated that under the future climate change scenarios the distribution of T. chebula is likely to decrease. The results indicate that T. chebula is highly vulnerable to climate change. Considering the economic importance of the species, it is important to understand how the species distribution will alter in the wake of climate change to develop effective conservation strategies. The study also provides important environment variables that determine the species distribution which could aid in identifying areas where the species could be cultivated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhikari D, Reshi DBK, Samant SS, Chettri A, Upadhaya K, Shah MA, Singh PP, Tiwary R, Majumdar K, Pradhan A, Thakur ML, Salam N, Zahoor Z, Mir MH, Kaloo ZA, Barik SK (2018) Inventory and characterization of new populations through ecological niche modelling improve threat assessment. Curr Sci 114(3):519–531

    Article  Google Scholar 

  • Ahmad R, Khuroo AA, Hamid M et al (2019) Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodivers Conserv 28:2319–2344. https://doi.org/10.1007/s10531-019-01775-y

    Article  Google Scholar 

  • Aiello-Lammens MA, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

    Article  Google Scholar 

  • Akbar S (2020) Terminalia chebula Retz. (Combretaceae). In: Handbook of 200 Medicinal Plants. Springer, Cham., pp 1779–1793

  • Akerele O (1993) Nature’s medicinal bounty: don’t throw it away. World Health Forum 14(4):390–395

    CAS  PubMed  Google Scholar 

  • Annotated checklist of Flowering Plants of Nepal. http://www.efloras.org/florataxon.aspx?flora_id=110&taxon_id=200014747

  • Aranya M, Pensak J, Toshihiro A, Worapaka M, Jiradey M (2010) In vitro anti-aging activities of Terminalia chebula gall extract. Pharma Biol 48(4):469–481. https://doi.org/10.3109/13880200903586286

    Article  Google Scholar 

  • Arshad MA, Mir AK, Mushtaq A, Muhammad Z (2010) Herbal medicines used to cure various ailments by the inhabitats of Abbottabad district, North West Frontier Province, Pakistan. Indian J Tradit Knowl 91(1):175–183

    Google Scholar 

  • Bag A, Bhattacharyya SK, Chattopadhyay RR (2013) The development of Terminalia chebula Retz. (Combretaceae) in clinical research. Asian Pac J Trop Biomed 3(3): 244–252. https://doi.org/10.1016/S2221-1691(13)60059-3

  • Beaumont LJ, Pitman A, Perkins S, Zimmermann NE, Yoccoz NG, Thuiller W (2011) Impacts of climate change on the world’s most exceptional ecoregions. Proc Natl Ac Sci 108:2306–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohl CL, Kass JM, Anderson RP (2019) A new null model approach to quantify performance and significance for ecological niche models of species distributions. J Biogeogr 46(6):1101–1111

    Article  Google Scholar 

  • Bonett DG, Wright TA (2000) Sample size requirements for estimating Pearson, Kendall and Spearman correlations. Psychometrika 65:23–28. https://doi.org/10.1007/BF02294183

    Article  Google Scholar 

  • Catalogue of Life. https://www.catalogueoflife.org/data/taxon/55G44

  • Chander J, Chauhan S. (2014). Current Status of Management of Harar ( Terminalia chebula Retz.) in Shivalik Hills. Journal of Krishi Vigyan. 3: 13. https://doi.org/10.5958/2349-4433.2014.01241.0

  • Climate Change and Non Timber Forest Produce Roles and Potential in Jharkhand, Chhattisgarh and Odisha. (2015–16) Indo Global Social Service Society (IGSSS), pp 7–9

  • Chattopadhyay RR, Bhattacharyya SK (2007) Species composition and stand structure of natural forest, timber-harvested forest and degraded forest in the Bago Yoma region of Myanmar. J Korean For Soc 96:572–579

    Google Scholar 

  • Climate Change IPCC (2013) The physical science basis: contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Dash J, Behera MD, Jeganathan C, Jha CS, Sharma S, Lucas R, Khuroo AA, Harris A, Atkinson PM, Boyd DS, Singh CP (2020) India’s contribution to mitigating the impacts of climate change through vegetation management. Trop Ecol 61(1):168–171

    Article  Google Scholar 

  • Database of Native Plants of Taiwan: http://www.hast.biodiv.tw/Taxon/speciesDetailE.aspx?speciesID=4547

  • Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Ac Sci 105(18):6668–6672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Echography 36:27–46

    Article  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species distributions from occurrence data. Ecography 29: 129–151

  • Fernandez-Going BM, Anacker BL, Harrison SP (2012) Temporal variability in California grasslands: soil type and species functional traits mediate response to precipitation. Ecology 93(9):2104–2114

    Article  CAS  PubMed  Google Scholar 

  • Flora of Pakistan. http://www.efloras.org/florataxon.aspx?flora_id=5&taxon_id=200014747

  • Ghareghan F, Ghanbarian G, Pourghasemi HR, Safaeian R (2020) Prediction of habitat suitability of Morina persica L. species using artificial intelligence techniques. Ecol Indica 112:106096

    Article  Google Scholar 

  • Goraya GS, Ved DK (2017) Medicinal Plants in India: An Assessment of their Demand and Supply. National Medicinal Plants Board, Ministry of AYUSH, Government of India, New Delhi and Indian Council of Forestry Research & Education, Dehradun.

  • Graham CH et al (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    Article  PubMed  Google Scholar 

  • Gupta PC (2012) Biological and pharmacological properties of Terminalia chebula Retz. (Haritaki)-an overview. Int J Pharm Pharm Sci 4(3):62–68

    Google Scholar 

  • Hamid M, Khuroo AA, Charles B et al (2019) Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. Biodiver Conserv 28:2345–2370. https://doi.org/10.1007/s10531-018-1641-8

    Article  Google Scholar 

  • Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93:679–688

    Article  PubMed  Google Scholar 

  • Hijmans RJ et al (2000) Assessing the geographic representativeness of genebank collections: the case of Bolivian wild potatoes. Conserv Biol 14:1755–1765

    Article  CAS  PubMed  Google Scholar 

  • Hirsch T (2010) Global Biodiversity Outlook 3; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada.

  • Hirzel A, Guisan A (2002) Which is the optimal sampling strategy for habitat suitability modelling. Ecol Modell 157:331–341

    Article  Google Scholar 

  • Joshi M, Charles B, Ravikanth G, Aravind NA (2017) Assigning conservation value and identifying hotspots of endemic rattan diversity in the Western Ghats, India. Plant Divers 39:263–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Kadmon R et al (2004) Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol Appl 14:401–413

    Article  Google Scholar 

  • Kumar A, Kumar A, Dibyendu A, Ravikanth G, Purabi S, Khan L (2020) Ecological niche modelling for assessing potential distribution of Pterocarpus marsupium Roxb. in Ranchi, Eastern India. Ecol Res 35(6):105–1105. https://doi.org/10.1111/1440-1703.12176

  • Li R, Xu M, Wong MHG, Qiu S, Sheng Q, Li X et al (2015) Climate change-induced decline in bamboo habitats and species diversity: implications for giant panda conservation. Divers Distrib 21:379–391

    Article  Google Scholar 

  • Lobo JM, Alberto JV, Raimundo R (2008) AUC: a mislead- ing measure of the performance of predictive distribution models. Glob Ecol 17:145–151

    Google Scholar 

  • Loveridge R, Eang S, Eames JC (2018) Attracting white-shouldered ibises to safe roosting sites in Siem Pang Kang Lech Wildlife Sanctuary, Cambodia. Cambodian J Nat Hist pp 58–62

  • lUCN Commission on National Parks and Protected Areas. lUCN Directory of South Asian. Digitized by the internet archive in 2010 with funding from UNEP-WCIVIC, Cambridge Protected Areas, pp 39,207

  • Mahyar UW, Burley JS, Gyllenhaal C, Soejarto DD (1991) Medicinal plants of Seberida (Riau Province, Sumatra, Indonesia). J Ethnopharmacol 31(2):217–237

    Article  CAS  PubMed  Google Scholar 

  • Malhotra KC, Bhatacharya P (2010) Forest and Livelihood. Publ, CES, Hyderabad, p 246

    Google Scholar 

  • Mark C, Vanderwel DW, Purves, (2014) How do disturbances and environmental heterogeneity affect the pace of forest distribution shifts under climate change? Ecography 37(1):10–20

    Article  Google Scholar 

  • Mohammad HK, Nur H, Mohammad MR, Mohammad AR, Jakia AK, Nazia TH, Mohammad RQB, Sadia MM, Rownak J, Mohammed R (2014) A survey of medicinal plants used by the Deb Barma clan of the Tripura tribe of Moulvibazar district, Bangladesh. J Ethnobiol Ethnomedicine, pp 10–19

  • Muhammad S, Khan BA, Akhtar N, Mahmood T, Rasul A, Hussain I, Khan H, Badshah A (2012) The morphology, extractions, chemical constituents and uses of Terminalia chebula: A review. J Med Plants Res 6(33):4772–4775

    Article  Google Scholar 

  • Natuhara Y, Imanishi A, Kanzaki M et al (2012) Uses of trees in paddy fields in Champasak Province, southern Lao PDR. Landsc Ecol Eng 8:115–122. https://doi.org/10.1007/s11355-011-0172-1

    Article  Google Scholar 

  • Nguyen QV, Nguyen VB, Eun JB, Wang SL, Nguyen DH, Tran TN, Nguyen AD (2016) Anti-oxidant and antidiabetic effect of some medicinal plants belong to Terminalia species collected in Dak Lak Province, Vietnam. Res Chem Intermed 42(6):5859–5871

    Article  CAS  Google Scholar 

  • Nicholson DI (1965) A study of virgin forest near Sandakan North Borneo. In Pmc. Symp. on ecological research in humid tropics vegetation. Kuching: UNESCO. Government of Sarawak, pp 67–86.

  • Nigam M, Mishra AP, Adhikari-Devkota A, Dirar AI, Hassan MM, Adhikari A, Belwal T, Devkota HP (2020) Fruits of Terminalia chebula Retz.: A review on traditional uses, bioactive chemical constituents and pharmacological activities. Phytother Res 34(10): 2518–2533. https://doi.org/10.1002/ptr.6702

  • Nishteswar K (2014) Depleting medicinal plant resources: a threat for survival of Ayurveda. AYU 35:349–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Working Paper No. APFSOS II/WP/2009/29 (2009) Asia-Pacific forestry sector outlook study II (APFSOS II).

  • Ortega-Huerta MA, Peterson AT (2008) Modeling ecological niches and predicting geographic distributions: a test of six presence-only methods. Rev Mexican Biodiversity 79:205–216

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  CAS  PubMed  Google Scholar 

  • Patrick D (2009) Forest Department Government of Sri Lanka, Sri Lanka forestry outlook study. Asia-Pacific Forestry Sector Outlook Study APFSOS II:6–24

    Google Scholar 

  • Pearce W, Holmberg K, Hellsten I, Nerlich B (2014) Climate change on twitter: topics, communities and conversations about the 2013 IPCC working group 1 report. PLoS ONE 9(4):e94785. https://doi.org/10.1371/journal.pone.0094785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Philip W R (1999) Forest Habitats and Flora in Lao PDR, Cambodia, and Vietnam. Conservation Priorities in Indochina - WWF Desk Study. Prepared for World Wide Fund for Nature, pp 1–171

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography 40: 887–893

  • Phurpa W, Karma Y, Kinga J (2017) Pharmacological, ethnopharmacological, and botanical evaluation of subtropical medicinal plants of Lower Kheng region in Bhutan. Integr Med Res, pp 382–387

  • Piao S, Qiang L, Anping C, Ivan AJ, Yongshuo F, Junhu D, Lingli L, Xu L, Miaogen S, Xiaolin Z (2019) Plant phenology and global climate change: Current progresses and challenges. Glob Change Biol 25(6):1922–1940

    Article  Google Scholar 

  • Taiwan Plant names. www.efloras.orghttp://www.efloras.org/florataxon.aspx?flora_id=101&taxon_id=200014747

  • India Biodiversity Portal. Terminalia chebula Retz. . [online] India Biodiversity Portal, Species Page. https://indiabiodiversity.org/biodiv/species/show/31838

  • Priti H, Aravind NA, Uma Shaanker R, Ravikanth G (2016) Modeling impacts of future climate on the distribution of Myristicaceae species in the Western Ghats, India. Ecol Eng 89:14–23

    Article  Google Scholar 

  • Purna BC, Kinley T (2012) State of Forest Genetic Resources of Bhutan, Country report. RNR Research and Development Centre, Yusipang, pp 1–68

  • Rahimian BA, Salehi H, Pourghasemi HR, Blaschke T (2019). Predicting habitat suitability and conserving Juniperus spp. habitat using SVM and maximum entropy machine learning techniques. Water 11(10):2049

  • Raman S, Shameer TT, Charles B et al (2020) Habitat suitability model of endangered Latidens salimalii and the probable consequences of global warming. Trop Ecol 61:570-582. https://doi.org/10.1007/s42965-020-00114-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Rana SK, Rana HK, Ghimire SK, Shrestha KK, Ranjitkar S (2017) Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal. J Mt Sci 14(3):558–570

    Article  Google Scholar 

  • Rana SK, Rana HK, Luo D, Sun H. (2021). Estimating climate-induced ‘Nowhere to go’range shifts of the Himalayan Incarvillea Juss. Using multi-model median ensemble species distribution models. Ecol Indic 121:107127

  • Rare and endangered economic plants of Bangladesh, Country Compass. http://www.fao.org/3/Y3660e/y3660e05.htm

  • Rathinamoorthy R, Thilagavathi G (2014) Department of fashion technology, PSG college of technology, Coimbatore—641004, Tamil Nadu. India Int J Pharmtech Res 6(1):97–116

    Google Scholar 

  • Raut B, Khanal DP, Kharel A, Raut B (2018) Traditional Healing Practice in Rajbanshi and Satar community of Jhapa, Nepal. JMMIHS 4(1):103–116

    Google Scholar 

  • Reddy S, Dávalos L (2003) Geographical sampling bias and its implications for conservation priorities in Africa. J Biogeogr 30: 1719–1727

  • Rundel (1999) Forest Habitats and Flora in Laos PDR, Cambodia, and Vietnam.

  • Saatchi SS, Harris NL, Brown S, Lefsky M, Mitchard ET, Salas W, Zutta BR, Buermann W, Lewis SL, Hagen S, Petrova S, White L, Silman M, Morel A (2011) Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 108:9899–9904. https://doi.org/10.1073/pnas.1019576108

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanjeewa TABD, Pushpakumara DKNG, Sangakkara UR (2013) Morphological Characterization of Terminalia chebula Retz. Sri Lanka Trop Agri Res 25(1):127–132

    Article  Google Scholar 

  • Sarma B, Baruah PS, Tanti (2018) Habitat distribution modeling for reintroduction and conservation of Aristolochia indica L.—a threatened medicinal plant in Assam, India. J Threat Taxa 10(11):12531–12537. https://doi.org/10.11609/jott.3600.10.11.12531-12537

    Article  Google Scholar 

  • Saru G, Bipana B, Kabita S, Bijaya D, Deepak G (2020) Common medicinal plants of Nepal: A review of Triphala: Harro (Terminalia chebula), Barro (Terminalia bellirica), and Amala (Emblica officinalis). Asian J Pharmacogn 4(3):5–13

    Google Scholar 

  • Sen S, Gode A, Ramanujam S, Ravikanth G, Aravind NA (2016a) Modeling the impact of climate change on wild Piper nigrum (Black Pepper) in Western Ghats, India using Ecological Niche models. J Plant Res 129(6):1033–1040. https://doi.org/10.1007/s10265-016-0859-3

    Article  PubMed  Google Scholar 

  • Sen S, Shivaprakash KN, Aravind NA, Ravikanth G, Dayanandan S (2016b) Ecological niche modeling for conservation planning of an endemic snail in the verge of becoming a pest in cardamom plantations in the Western Ghats Biodiversity hot-spot. Ecol Evol 6(18):6510–6523. https://doi.org/10.1002/ece3.2368

    Article  PubMed  PubMed Central  Google Scholar 

  • Sheldon SK (2019) Climate change in the tropics: ecological and evolutionary responses at low latitudes. Annu Rev Ecol Evol Syst 50(1):303–333

    Article  Google Scholar 

  • Shivaprakash KN, Ravikanth G, Barve N, Ghazoul J, Ganeshaiah KN, Uma Shaanker R (2013) Do ecological niche model predictions reflect the adaptive landscape of species? A test using Myristica malabarica Lam, an endemic tree in the Western Ghats, India. Plos One 8(11):e82066. https://doi.org/10.1371/journal.pone.0082066

    Article  CAS  Google Scholar 

  • Shrestha S (2019) Effects of climate change in agricultural insect pest. Acta Sci Agric 3:74–80

    Article  Google Scholar 

  • Subba B, Sen S, Ravikanth G, Nobis MP (2018) Direct modelling of limited migration improves projected distributions of Himalayan amphibians under climate change. Biol Conserv 227:352–360

    Article  Google Scholar 

  • Sumangala RC, Rosario S, Charles B, Ganesh D, Ravikanth G (2017) Identifying conservation priority sites for Saraca asoca: an important medicinal plant using ecological niche models. Ind For 143(6):531–536

    Google Scholar 

  • Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Thaung NO, Don KL (2007) PHCOG REV.: plant review Terminalia chebula. Pharmacogn Rev 1(1):151–156

    Google Scholar 

  • Tropicos.org. Missouri Botanical Garden (2021) http://www.tropicos.org © 2021 Missouri Botanical Garden—4344 Shaw Boulevard—Saint Louis, Missouri 63110. https://www.tropicos.org/name/8200010

  • Virginia HD et al (2001) Climate change and forest disturbances. Bioscience 51(9):723–733

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools a toolbox for comparative studies of environmental niche models. Ecography 33(3):607-611. https://doi.org/10.1111/j.1600-0587.2009.06142.x

    Article  Google Scholar 

  • Wilart P, Saranya W, Phansuang D, Wipanoot B, Punchavee S, Angkhana C, Boonthawan W (2020) HPLC Determination of the Gallic Acid and Chebulinic Acid Contents of Phyllanthus emblica Linn., Terminalia bellirica Roxb., Terminalia chebula Retz. and Triphala Products from Chae Son district, Lampang, Thailand. Am J Food Tech 8(3):87–98

  • Wilpattu National Park. http://eastboundgroup.com/eastnews-newsletter/2020/August/Cover%20story.html

  • Xu C, Kohler TA, Lenton TM, Svenning J-C, Scheffer M (2020) Future of the human climate niche. Proc Natl Acad Sci 117(21):11350–11355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav U, Hugo A, Boon EK, Yadav S, Shrestha KK (2010) Indigenous use and bio-efficacy of medicinal plants in the Rasuwa District, Central Nepal. J Ethnobiol Ethnomed 6(3):1–10

    Google Scholar 

Download references

Acknowledgements

We sincerely thank Dr. K.N. Ganeshaiah for providing us the co-ordinates of T. chebula of entire Western Ghats, Dr. M. Sanjappa for giving us access to BSI Herbariums at Kolkota, Dehradun, Pune and Coimbatore, we also thank Harisha, Vikram and Arunima for providing co-ordinates of T. chebula from their field sites. SS and GR acknowledge the support of DBT for undertaking the study (BT/PR29859/FCB/125/23/2018). The authors thank the anonymous reviewers for the detailed comments which has helped in vastly improving the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KBR, SS, GR & KK led the manuscript writing with inputs from all the authors. KBR, gathered data, BC developed methodology for modelling, KBR and BC performed analysis. GR revised the manuscripts with inputs from all the authors. All the authors gave final approval for publication.

Corresponding author

Correspondence to B. R. Kailash.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Supplementary file2 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kailash, B.R., Charles, B., Ravikanth, G. et al. Identifying the potential global distribution and conservation areas for Terminalia chebula, an important medicinal tree species under changing climate scenario. Trop Ecol 63, 584–595 (2022). https://doi.org/10.1007/s42965-022-00237-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42965-022-00237-x

Keywords

Navigation