Skip to main content

Advertisement

Log in

Two-Decade Experience of Royan Institute in Obtaining Mature Oocyte from Cryopreserved Ovarian Tissue: In Vitro and In Vivo Approaches

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Ovarian tissue cryopreservation (OTC) holds promise for preservation of fertility among women who have lost their fertility due to diseases such as cancer. OTC has significantly assisted such cases by helping them maintain normal hormonal levels and menstrual cycles. Appropriate strategies to develop and extract mature oocytes from OTC could overcome a range of complications that are associated with ovarian dysfunction, caused by aging, and primary or secondary ovarian insufficiency. Scientists from different departments at The Royan Institute (Tehran, Iran) have been conducting studies to find the best way to extract mature oocytes from animal and human cryopreserved ovarian tissues. The various studies conducted in this area in the past 20 years, by researchers of the Royan Institute, are collated and provided in this review, in order to provide an idea of where we are now in the area of fertility preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The sources for the information discussed in this review can be obtained from the papers cited in the references.

References

  1. Oktay K, Oktem O. Ovarian cryopreservation and transplantation for fertility preservation for medical indications: report of an ongoing experience. Fertil Steril. 2010;93(3):762–8.

    Article  PubMed  Google Scholar 

  2. Oktay K, Karlikaya G. Ovarian function after transplantation of frozen, banked autologous ovarian tissue. N Engl J Med. 2000;342(25):1919.

    Article  CAS  PubMed  Google Scholar 

  3. Andersen CY, et al. Two successful pregnancies following autotransplantation of frozen/thawed ovarian tissue. Hum Reprod. 2008;23(10):2266–72.

    Article  PubMed  Google Scholar 

  4. Demeestere I, et al. Fertility preservation: successful transplantation of cryopreserved ovarian tissue in a young patient previously treated for Hodgkin’s disease. Oncologist. 2007;12(12):1437–42.

    Article  PubMed  Google Scholar 

  5. Meirow D, et al. Pregnancy after transplantation of cryopreserved ovarian tissue in a patient with ovarian failure after chemotherapy. N Engl J Med. 2005;353(3):318–21.

    Article  CAS  PubMed  Google Scholar 

  6. Silber SJ, et al. Ovarian transplantation between monozygotic twins discordant for premature ovarian failure. N Engl J Med. 2005;353(1):58–63.

    Article  CAS  PubMed  Google Scholar 

  7. Donnez J, et al. Livebirth after orthotopic transplantation of cryopreserved ovarian tissue. Lancet. 2004;364(9443):1405–10.

    Article  CAS  PubMed  Google Scholar 

  8. Oktay K, et al. Robot-assisted laparoscopic transplantation of frozen-thawed ovarian tissue. J Minim Invasive Gynecol. 2017;24(6):897–8.

    Article  PubMed  Google Scholar 

  9. Leonel ECR, Lucci CM, Amorim CA. Cryopreservation of human ovarian tissue: a review. Transf Med Hemother. 2019;46(3):173–81.

    Article  Google Scholar 

  10. Kristensen SG, Andersen CY. Cryopreservation of ovarian tissue: opportunities beyond fertility preservation and a positive view into the future. Front Endocrinol. 2018;9:347.

    Article  Google Scholar 

  11. Gellert S, et al. Transplantation of frozen-thawed ovarian tissue: an update on worldwide activity published in peer-reviewed papers and on the Danish cohort. J Assist Reprod Genet. 2018;35(4):561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Donnez J, Dolmans M-M. Fertility preservation in women. N Engl J Med. 2017;377(17):1657–65.

    Article  PubMed  Google Scholar 

  13. Donnez J, et al. Ovarian tissue cryopreservation and transplantation: a review. Hum Reprod Update. 2006;12(5):519–35.

    Article  PubMed  Google Scholar 

  14. Oktay K. Ovarian tissue cryopreservation and transplantation: preliminary findings and implications for cancer patients. Hum Reprod Update. 2001;7(6):526–34.

    Article  CAS  PubMed  Google Scholar 

  15. Atrabi MJ, et al. PP-052-Primordial follicles formation and activation in newborn mouse whole ovary coculture using of granulosa and cumulus cells and their conditioned medium. Reprod Biomed Online. 2016;32:S24.

    Article  Google Scholar 

  16. Eivazkhani F, et al. PP-053-Positive effects of NAC on culture of mouse ovarian tissue. Reprod Biomed Online. 2016;32:S24.

    Article  Google Scholar 

  17. Adib S, Valojerdi MR, Alikhani M. Dose optimisation of PTEN inhibitor, bpV (HOpic), and SCF for the in-vitro activation of sheep primordial follicles. Growth Factors. 2019;37(3–4):178–89.

    Article  CAS  PubMed  Google Scholar 

  18. Hosseini M, et al. Improvement of in situ follicular activation and early development in cryopreserved human ovarian cortical tissue by co-culturing with mesenchymal stem cells. Cells Tissues Organs. 2019;208(1–2):48–58.

    Article  CAS  PubMed  Google Scholar 

  19. Morgan S et al. Culture and co-culture of mouse ovaries and ovarian follicles. J Vis Exp. 2015(97)

  20. Asgari F, et al. Three dimensional in vitro culture of preantral follicles following slow-freezing and vitrification of mouse ovarian tissue. Cryobiology. 2015;71(3):529–36.

    Article  CAS  PubMed  Google Scholar 

  21. Jamalzaei P, et al. Oocyte maturation and expression pattern of follicular genes during in-vitro culture of vitrified mouse pre-antral follicles. Gene Expr Patterns. 2016;20(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  22. Sadr SZ, et al. Mouse preantral follicle development in two-dimensional and three-dimensional culture systems after ovarian tissue vitrification. Eur J Obstetrics Gynecol Reprod Biol. 2015;194:206–11.

    Article  Google Scholar 

  23. Fatehi R, Ebrahimi B. Maternal-effect gene expression in cultured preantral follicles derived from vitrified-warmed mouse ovary. Cell J (Yakhteh). 2015;17(2):332.

    Google Scholar 

  24. Torkashvand H et al. The in vitro effect of chick embryo extract on mice pre-antral follicles. in Veterinary Research Forum. 2019. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

  25. Motamed M, et al. Tissue engineered human amniotic membrane application in mouse ovarian follicular culture. Ann Biomed Eng. 2017;45(7):1664–75.

    Article  CAS  PubMed  Google Scholar 

  26. Campbell L, Trendell J, Spears N. Identification of cells migrating from the thecal layer of ovarian follicles. Cell Tissue Res. 2013;353(1):189–94.

    Article  PubMed  Google Scholar 

  27. Hornick JE, et al. Multiple follicle culture supports primary follicle growth through paracrine-acting signals. Reproduction. 2013;145(1):19–32.

    Article  CAS  PubMed  Google Scholar 

  28. Spears N, De Bruin J, Gosden R. The establishment of follicular dominance in co-cultured mouse ovarian follicles. Reproduction. 1996;106(1):1–6.

    Article  CAS  Google Scholar 

  29. Hassani F, et al. Chitosan hydrogel supports integrity of ovarian follicles during in vitro culture: a preliminary of a novel biomaterial for three dimensional culture of ovarian follicles. Cell J (Yakhteh). 2020;21(4):479.

    Google Scholar 

  30. Atrabi MJ, et al. Formation and activation induction of primordial follicles using granulosa and cumulus cells conditioned media. J Cell Physiol. 2019;234(7):10148–56.

    Article  CAS  PubMed  Google Scholar 

  31. Eimani H, et al. Survival rate of preantral follicles derived from vitrified neonate mouse ovarian tissue by cryotop and conventional methods. BioFactors. 2007;31(2):117–26.

    Article  CAS  PubMed  Google Scholar 

  32. Kyasari O, et al. Expression of maturation genes and their receptors during in vitro maturation of sheep COCs in the presence and absence of somatic cells of cumulus origin. Theriogenology. 2012;77(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  33. Zand E, et al. Maturational gene upregulation and mitochondrial activity enhancement in mouse in vitro matured oocytes and using granulosa cell conditioned medium. Zygote. 2018;26(5):366–71.

    Article  CAS  PubMed  Google Scholar 

  34. Pirestani A, et al. Effect of ovarian cyclic status on in vitro embryo production in cattle. Int J Fertil Steril. 2011;4(4):172.

    PubMed  PubMed Central  Google Scholar 

  35. Tahaei LS, et al. Effects of retinoic acid on maturation of immature mouse oocytes in the presence and absence of a granulosa cell co-culture system. J Assist Reprod Genet. 2011;28(6):553–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fathi R, et al. Fertility preservation in cancer patients: in vivo and in vitro options. Cell J. 2017;19(2):173–83.

    PubMed  PubMed Central  Google Scholar 

  37. Muller G, et al. First heterotopic ovarian autotransplantation in the female. J Gynecol Obstet Biol Reprod. 1988;17(1):97–102.

    CAS  Google Scholar 

  38. Jeremias E, et al. Heterotopic autotransplantation of the ovary with microvascular anastomosis: a novel surgical technique. Fertil Steril. 2002;77(6):1278–82.

    Article  PubMed  Google Scholar 

  39. Jadoul P, et al. Laparoscopic ovariectomy for whole human ovary cryopreservation: technical aspects. Fertil Steril. 2007;87(4):971–5.

    Article  PubMed  Google Scholar 

  40. Mahmoodi M, et al. Effects of erythropoietin on ischemia, follicular survival, and ovarian function in ovarian grafts. Reproduction. 2014;147(5):733–41.

    Article  CAS  PubMed  Google Scholar 

  41. Tamadon A et al Histomorphometric evaluation of superovulation effect on follicular development after autologous ovarian transplantation in mice. Vet Med Int. 2015. 2015

  42. Mahmoodi M, et al. N-acetylcysteine improves function and follicular survival in mice ovarian grafts through inhibition of oxidative stress. Reprod Biomed Online. 2015;30(1):101–10.

    Article  CAS  PubMed  Google Scholar 

  43. Jasemi VSK, et al. Comparison of allotransplantation of fresh and vitrified mouse ovaries to the testicular tissue under influence of the static magnetic field. Cell J (Yakhteh). 2017;19(3):492.

    Google Scholar 

  44. Jasemi VSK et al. Function of vitrified mouse ovaries tissue under static magnetic field after autotransplantation. in Veterinary Research Forum. 2017. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

  45. Tavana S, et al. Auto-transplantation of whole rat ovary in different transplantation sites. Vet Res Forum. 2017;8(4):275–80.

    PubMed  PubMed Central  Google Scholar 

  46. Tavana S, et al. Restoration of ovarian tissue function and estrous cycle in rat after autotransplantation using hyaluronic acid hydrogel scaffold containing VEGF and bFGF. Growth Factors. 2016;34(3–4):97–106.

    Article  CAS  PubMed  Google Scholar 

  47. Eimani H, et al. Heterotopic autotransplantation of vitrified mouse ovary. Reprod Med Biol. 2011;10(4):267–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Behbahanian A, et al. In vitro maturation, fertilization and embryo culture of oocytes obtained from vitrified auto-transplanted mouse ovary. Int J Fertil Steril. 2013;6(4):278.

    PubMed  PubMed Central  Google Scholar 

  49. Akhavan Taheri M, Rezazadeh Valojerdi M, Ebrahimi B. Intramuscular autotransplantation of vitrified rat ovary encapsulated with hyaluronic acid hydrogel. Biopreserv Biobank. 2016;14(2):114–21.

    Article  CAS  Google Scholar 

  50. Abtahi NS, et al. Effect of therapeutic ultrasound on folliculogenesis, angiogenesis and apoptosis after heterotopic mouse ovarian transplantation. Ultrasound Med Biol. 2014;40(7):1535–44.

    Article  CAS  PubMed  Google Scholar 

  51. Zand-Vakili M, et al. An in vitro study on oocyte and follicles of transplanted ovaries treated with vascular endothelial growth factor. J Turk German Gynecol Assoc. 2017;18(4):167.

    Article  CAS  Google Scholar 

  52. Eimani H, et al. Comparative study between intact and non-intact intramuscular auto-grafted mouse ovaries. Reprod Biomed Online. 2009;18(1):53–60.

    Article  PubMed  Google Scholar 

  53. Gosden R, et al. Follicular development from ovarian xenografts in SCID mice. Reproduction. 1994;101(3):619–23.

    Article  CAS  Google Scholar 

  54. Bosma GC, Custer RP, Bosma MJ. A severe combined immunodeficiency mutation in the mouse. Nature. 1983;301(5900):527–30.

    Article  CAS  PubMed  Google Scholar 

  55. Weissman A, et al. Preliminary experience with subcutaneous human ovarian cortex transplantation in the NOD-SCID mouse. Biol Reprod. 1999;60(6):1462–7.

    Article  CAS  PubMed  Google Scholar 

  56. Oktay K, et al. Development of human primordial follicles to antral stages in SCID/hpg mice stimulated with follicle stimulating hormone. Hum Reprod (Oxford, England). 1998;13(5):1133–8.

    Article  CAS  Google Scholar 

  57. Oktay K, Newton H, Gosden RG. Transplantation of cryopreserved human ovarian tissue results in follicle growth initiation in SCID mice. Fertil Steril. 2000;73(3):599–603.

    Article  CAS  PubMed  Google Scholar 

  58. Nisolle M, et al. Histologic and ultrastructural evaluation of fresh and frozen-thawed human ovarian xenografts in nude mice. Fertil Steril. 2000;74(1):122–9.

    Article  CAS  PubMed  Google Scholar 

  59. Oktem O, Oktay K. A novel ovarian xenografting model to characterize the impact of chemotherapy agents on human primordial follicle reserve. Can Res. 2007;67(21):10159–62.

    Article  CAS  Google Scholar 

  60. Tahaei LS, et al. Follicle development of xenotransplanted sheep ovarian tissue into male and female immunodeficient rats. Int J Fertil Steril. 2015;9(3):354.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Mehdinia Z et al. Restoration of estrous cycles by co-transplantation of mouse ovarian tissue with MSCs. Cell Tissue Res. 2020

  62. Rajabzadeh AR, et al. Morphological study of isolated ovarian preantral follicles using fibrin gel plus platelet lysate after subcutaneous transplantation. Cell J (Yakhteh). 2015;17(1):145.

    Google Scholar 

  63. Jasmi VK, et al. Follicle development in grafted mouse ovaries after vitrification processes under static magnetic field. Cryo Lett. 2017;38(3):166–77.

    CAS  Google Scholar 

  64. Cho E, et al. A new possibility in fertility preservation: the artificial ovary. J Tissue Eng Regen Med. 2019;13(8):1294–315.

    Article  CAS  PubMed  Google Scholar 

  65. Chiti MC, et al. Fibrin in reproductive tissue engineering: a review on its application as a biomaterial for fertility preservation. Ann Biomed Eng. 2017;45(7):1650–63.

    Article  CAS  PubMed  Google Scholar 

  66. Soares M, et al. The best source of isolated stromal cells for the artificial ovary: medulla or cortex, cryopreserved or fresh? Hum Reprod. 2015;30(7):1589–98.

    Article  CAS  PubMed  Google Scholar 

  67. Fisch B, Abir R. Female fertility preservation: past, present and future. Reproduction. 2018;156(1):F11–27.

    Article  CAS  PubMed  Google Scholar 

  68. Feichtinger M, et al. Allogeneic ovarian transplantation using immunomodulator preimplantation factor (PIF) as monotherapy restored ovarian function in olive baboon. J Assist Reprod Genet. 2018;35(1):81–9.

    Article  PubMed  Google Scholar 

  69. David A, et al. Restoring ovarian endocrine function with encapsulated ovarian allograft in immune competent mice. Ann Biomed Eng. 2017;45(7):1685–96.

    Article  PubMed  Google Scholar 

  70. Kim SW et al. Curcumin treatment in combination with glucose restriction inhibits intracellular alkalinization and tumor growth in hepatoma cells. 2019. 20(10)

  71. Kim YJ, et al. Induction of multiple ovulation via modulation of angiotensin II receptors in in vitro ovarian follicle culture models. J Tissue Eng Regen Med. 2017;11(11):3100–10.

    Article  CAS  PubMed  Google Scholar 

  72. Kim SS. Assessment of long term endocrine function after transplantation of frozen-thawed human ovarian tissue to the heterotopic site: 10 year longitudinal follow-up study. J Assist Reprod Genet. 2012;29(6):489–93.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kim YJ, et al. MicroRNAs transfected into granulosa cells may regulate oocyte meiotic competence during in vitro maturation of mouse follicles. Hum Reprod. 2013;28(11):3050–61.

    Article  CAS  PubMed  Google Scholar 

  74. Amorim CA, Shikanov A. The artificial ovary: current status and future perspectives. Future Oncol. 2016;12(19):2323–32.

    Article  CAS  PubMed  Google Scholar 

  75. Jamalzaei P, et al. Effects of alginate concentration and ovarian cells on in vitro development of mouse preantral follicles: a factorial study. Int J Fertil Steril. 2020;13(4):330.

    CAS  PubMed  Google Scholar 

  76. Sadr SZ, et al. Utilizing fibrin-alginate and matrigel-alginate for mouse follicle development in three-dimensional culture systems. Biopreserv Biobank. 2018;16(2):120–7.

    Article  CAS  PubMed  Google Scholar 

  77. Mirzaeian L, et al. Optimizing the cell seeding protocol to human decellularized ovarian scaffold: application of dynamic system for bio-engineering. Cell J. 2020;22(2):227–35.

    PubMed  Google Scholar 

  78. Eivazkhani F, et al. Evaluating two ovarian decellularization methods in three species. Mater Sci Eng C Mater Biol Appl. 2019;102:670–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work did not have any foundation support

Funding

This study was scientifically supported by the Shahid Beheshti University of Medical Sciences and Royan Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rouhollah Fathi or Hamid Nazarian.

Ethics declarations

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Competing Interest

The authors declare no competing interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaleghi, S., Fathi, R., Eivazkhani, F. et al. Two-Decade Experience of Royan Institute in Obtaining Mature Oocyte from Cryopreserved Ovarian Tissue: In Vitro and In Vivo Approaches. Reprod. Sci. 29, 1685–1696 (2022). https://doi.org/10.1007/s43032-021-00728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00728-7

Keywords

Navigation