Skip to main content
Log in

Monolithic all-perovskite tandem solar cells: recent progress and challenges

  • Review
  • Published:
Journal of the Korean Ceramic Society Aims and scope Submit manuscript

Abstract

All-perovskite tandem solar cells (TSCs) show great potential for achieving efficiencies beyond the Shockley–Queisser limit owing to their excellent photovoltaic properties and cost effectiveness. In this review, the current status of all-perovskite TSCs as well as recent research progress are introduced with a focus on three main strategies: optimization of the interconnecting layer (ICL), suppression of tin oxidation in low-bandgap perovskites, and prevention of halide segregation in wide-bandgap perovskites. The development of triple-junction all-perovskite devices and remaining issues facing all-perovskite TSCs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2017, Springer Nature

Fig. 2
Fig. 3

Copyright 2015, Royal Society of Chemistry. b Schematic diagram of all-perovskite TSCs with the vacuum deposited ICL. Reprinted with permission from [27]. Copyright 2018, Royal Society of Chemistry. c Cross-view scanning electron microscope images and the structure of all-perovskite TSCs with ultrathin metal as the ICL. Reprinted with permission from [33]. Copyright 2018, Wiley–VCH

Fig. 4

Copyright 2018, American Chemical Society

Fig. 5

Copyright 2017, American Chemical Society

Fig. 6

Copyright 2019, Zhibin Yang et al.

Fig. 7

Copyright 2018, Wiley–VCH

Fig. 8

Copyright 2018, Royal Society of Chemistry

Fig. 9

Copyright 2020, Wiley–VCH

Fig. 10

source with an intensity of 200 mW cm−2 at 85 °C. Reprinted with permission from [64]. Copyright 2017, Wiley–VCH. b Device architecture based on wide-bandgap Cs0.17FA0.83Pb(I0.6Br0.4)3 perovskite with 2D-RP interlayer processed by depositing BABr solution on top of the perovskite. c J–V curve of champion devices with and without BABr passivation layer measured from reverse (open symbols) and forward (closed symbols) scans under AM 1.5G (1000 W m−2) irradiation. Reprinted with permission from [65]. Copyright 2019, Wiley–VCH

Fig. 11

Copyright 2020, American Chemical Society

Fig. 12

Reprinted with permission from [75]. Copyright 2020, American Chemical Society

Similar content being viewed by others

References

  1. Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Electro-optics of perovskite solar cells. Nat. Photon. 9(2), 106–112 (2015)

    Article  CAS  Google Scholar 

  2. J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-Efficiency Perovskite Solar Cells. Chem. Rev. 120(15), 7867–7918 (2020)

    Article  CAS  Google Scholar 

  3. N.G. Park, K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nat. Rev. Mater. 5(5), 333–350 (2020)

    Article  CAS  Google Scholar 

  4. Z. Li, T.R. Klein, D.H. Kim, M. Yang, J.J. Berry, M.F.A.M. Van Hest, K. Zhu, Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 3, 1–20 (2018)

    Article  CAS  Google Scholar 

  5. Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao, J. Huang, Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy. 3(7), 560–566 (2018)

    Article  CAS  Google Scholar 

  6. M. Green, E. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis, X. Hao, Solar cell efficiency tables (version 57). Prog. Photovoltaics Res. 29, 3–15 (2021)

  7. W. Shockley, H.J. Queisser, detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32(3), 510–519 (1961)

    Article  CAS  Google Scholar 

  8. I.J. Park, J.H. Park, S.G. Ji, M.A. Park, J.H. Jang, J.Y. Kim, A three-terminal monolithic perovskite/Si tandem solar cell characterization platform. Joule. 3(3), 807–818 (2019)

    Article  CAS  Google Scholar 

  9. D. Kim, H.J. Jung, I.J. Park, B.W. Larson, S.P. Dunfield, C. Xiao, J. Kim, J. Tong, P. Boonmongkolras, S.G. Ji, F. Zhang, S.R. Pae, M. Kim, S.B. Kang, V. Dravid, J.J. Berry, J.Y. Kim, K. Zhu, D.H. Kim, B. Shin, Efficient, stable silicon tandem cells enabled by anion-engineered wide-bandgap perovskites. Science 368(6487), 155–160 (2020)

    Article  CAS  Google Scholar 

  10. Q. Han, Y.T. Hsieh, L. Meng, J.L. Wu, P. Sun, E.P. Yao, S.Y. Chang, S.H. Bae, T. Kato, V. Bermudez, Y. Yang, High-performance perovskite/ Cu(In, Ga)Se2 monolithic tandem solar cells. Science 361(6405), 904–908 (2018)

    Article  CAS  Google Scholar 

  11. A. Al-Ashouri, A. Magomedov, M. Roß, M. Jošt, M. Talaikis, G. Chistiakova, T. Bertram, J.A. Márquez, E. Köhnen, E. Kasparavičius, S. Levcenco, L. Gil-Escrig, C.J. Hages, R. Schlatmann, B. Rech, T. Malinauskas, T. Unold, C.A. Kaufmann, L. Korte, G. Niaura, V. Getautis, S. Albrecht, Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ. Sci. 12(11), 3356–3369 (2019)

    Article  CAS  Google Scholar 

  12. S. Dong, Y. Liu, Z. Hong, E. Yao, P. Sun, L. Meng, Y. Lin, J. Huang, G. Li, Y. Yang, Unraveling the high open circuit voltage and high performance of integrated perovskite/Organic bulk-heterojunction solar cells. Nano Lett. 17(8), 5140–5147 (2017)

    Article  CAS  Google Scholar 

  13. Y. Liu, Z. Hong, Q. Chen, W. Chang, H. Zhou, T.-B. Song, E. Young, Y. (Michael) Yang, J. You, G. Li, Y. Yang, Integrated Perovskite/Bulk-Heterojunction toward Efficient Solar Cells. Nano Lett. 15(1), 662–668 (2015)

    Article  CAS  Google Scholar 

  14. G.E. Eperon, M.T. Hörantner, H.J. Snaith, Metal halide perovskite tandem and multiple-junction photovoltaics. Nat. Rev. Chem. 1(12), 95 (2017)

    Article  CAS  Google Scholar 

  15. D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Hörantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, H.J. Snaith, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016)

    Article  CAS  Google Scholar 

  16. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, H.J. Snaith, Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982–988 (2014)

    Article  CAS  Google Scholar 

  17. F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136(22), 8094–8099 (2014)

    Article  CAS  Google Scholar 

  18. M.T. Hörantner, T. Leijtens, M.E. Ziffer, G.E. Eperon, M.G. Christoforo, M.D. McGehee, H.J. Snaith, The potential of multijunction perovskite solar cells. ACS Energy Lett. 2(10), 2506–2513 (2017)

    Article  CAS  Google Scholar 

  19. D.J. Slotcavage, H.I. Karunadasa, M.D. McGehee, Light-induced phase segregation in halide-perovskite absorbers. ACS Energy Lett. 1(6), 1199–1205 (2016)

    Article  CAS  Google Scholar 

  20. A.J. Barker, A. Sadhanala, F. Deschler, M. Gandini, S.P. Senanayak, P.M. Pearce, E. Mosconi, A.J. Pearson, Y. Wu, A.R.S. Kandada, T. Leijtens, F. De Angelis, S.E. Dutton, A. Petrozza, R.H. Friend, Defect-assisted photoinduced halide segregation in mixed-halide perovskite thin films. ACS Energy Lett. 2(6), 1416–1424 (2017)

    Article  CAS  Google Scholar 

  21. I. Chung, J.-H. Song, J. Im, J. Androulakis, C.D. Malliakas, H. Li, A.J. Freeman, J.T. Kenney, M.G. Kanatzidis, CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material high hole mobility and phase-transitions. J. Am. Chem. Soc. 134(20), 8579–8587 (2012)

    Article  CAS  Google Scholar 

  22. J. Dong, S. Shao, S. Kahmann, A.J. Rommens, D. Hermida-Merino, G.H. ten Brink, M.A. Loi, G. Portale, Mechanism of crystal formation in ruddlesden-popper Sn-based perovskites. Adv. Funct. Mater. 30(24), 2001294 (2020)

    Article  CAS  Google Scholar 

  23. Z. Yang, Z. Yu, H. Wei, X. Xiao, Z. Ni, B. Chen, Y. Deng, S.N. Habisreutinger, X. Chen, K. Wang, J. Zhao, P.N. Rudd, J.J. Berry, M.C. Beard, J. Huang, Enhancing electron diffusion length in narrow-bandgap perovskites for efficient monolithic perovskite tandem solar cells. Nat. Commun. 10(1), 1–9 (2019)

    Article  CAS  Google Scholar 

  24. C. Li, Y. Wang, W.C.H. Choy, efficient interconnection in perovskite tandem solar cells. Small Methods. 4(7), 1–19 (2020)

    Article  Google Scholar 

  25. Y. Ko, H. Park, C. Lee, Y. Kang, Y. Jun, Recent progress in interconnection layer for hybrid photovoltaic tandems. Adv. Mater. 32(51), 2002196 (2020)

    Article  CAS  Google Scholar 

  26. F. Jiang, T. Liu, B. Luo, J. Tong, F. Qin, S. Xiong, Z. Li, Y. Zhou, A two-terminal perovskite/perovskite tandem solar cell. J. Mater. Chem. A. 4(4), 1208–1213 (2016)

    Article  CAS  Google Scholar 

  27. J. Ávila, C. Momblona, P. Boix, M. Sessolo, M. Anaya, G. Lozano, K. Vandewal, H. Míguez, H.J. Bolink, High voltage vacuum-deposited CH3NH3PbI3-CH3NH3PbI3 tandem solar cells. Energy Environ. Sci. 11(11), 3292–3297 (2018)

    Article  Google Scholar 

  28. S. Albrecht, M. Saliba, J.P.C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M.K. Nazeeruddin, A. Hagfeldt, M. Grätzel, B. Rech, Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. 9(1), 81–88 (2016)

    Article  CAS  Google Scholar 

  29. J. Werner, C.-H. Weng, A. Walter, L. Fesquet, J.P. Seif, S. De Wolf, B. Niesen, C. Ballif, Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. J. Phys. Chem. Lett. 7(1), 161–166 (2016)

    Article  CAS  Google Scholar 

  30. Y.H. Jang, J.M. Lee, J.W. Seo, I. Kim, D.-K. Lee, Monolithic tandem solar cells comprising electrodeposited CuInSe2 and perovskite solar cells with a nanoparticulate ZnO buffer layer. J. Mater. Chem. A. 5(36), 19439–19446 (2017)

    Article  CAS  Google Scholar 

  31. G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green, J.T.W. Wang, D.P. McMeekin, G. Volonakis, R.L. Milot, R. May, A. Palmstrom, D.J. Slotcavage, R.A. Belisle, J.B. Patel, E.S. Parrott, R.J. Sutton, W. Ma, F. Moghadam, B. Conings, A. Babayigit, H.G. Boyen, S. Bent, F. Giustino, L.M. Herz, M.B. Johnston, M.D. McGehee, H.J. Snaith, Perovskite-perovskite tandem photovoltaics with optimized band gaps. Science 354(6314), 861–865 (2016)

    Article  CAS  Google Scholar 

  32. A.F. Palmstrom, G.E. Eperon, T. Leijtens, R. Prasanna, S.N. Habisreutinger, W. Nemeth, E.A. Gaulding, S.P. Dunfield, M. Reese, S. Nanayakkara, T. Moot, J. Werner, J. Liu, B. To, S.T. Christensen, M.D. McGehee, M.F.A.M. van Hest, J.M. Luther, J.J. Berry, D.T. Moore, Enabling flexible all-perovskite tandem solar cells. Joule. 3(9), 2193–2204 (2019)

    Article  CAS  Google Scholar 

  33. C. Li, Z.S. Wang, H.L. Zhu, D. Zhang, J. Cheng, H. Lin, D. Ouyang, W.C.H. Choy, Thermionic emission-based interconnecting layer featuring solvent resistance for monolithic tandem solar cells with solution-processed perovskites. Adv. Energy Mater. 8(36), 1–10 (2018)

    Google Scholar 

  34. D. Zhao, C. Chen, C. Wang, M.M. Junda, Z. Song, C.R. Grice, Y. Yu, C. Li, B. Subedi, N.J. Podraza, X. Zhao, G. Fang, R.G. Xiong, K. Zhu, Y. Yan, Efficient two-terminal all-perovskite tandem solar cells enabled by high-quality low-bandgap absorber layers. Nat. Energy. 3(12), 1093–1100 (2018)

    Article  CAS  Google Scholar 

  35. Z. Yu, Z. Yang, Z. Ni, Y. Shao, B. Chen, Y. Lin, H. Wei, Z.J. Yu, Z. Holman, J. Huang, Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells. Nat. Energy. 5(9), 657–665 (2020)

    Article  CAS  Google Scholar 

  36. E.S. Parrott, T. Green, R.L. Milot, M.B. Johnston, H.J. Snaith, L.M. Herz, Interplay of structural and optoelectronic properties in formamidinium mixed tin-lead triiodide perovskites. Adv. Funct. Mater. 28(33), 1–11 (2018)

    Article  CAS  Google Scholar 

  37. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M.K. Nazeeruddin, M. Grätzel, F. De Angelis, Cation-induced band-gap tuning in organohalide perovskites: Interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14(6), 3608–3616 (2014)

    Article  CAS  Google Scholar 

  38. J. Im, C.C. Stoumpos, H. Jin, A.J. Freeman, M.G. Kanatzidis, Antagonism between Spin-orbit coupling and steric effects causes anomalous band gap evolution in the perovskite photovoltaic materials CH3NH3Sn1-xPbxI3. J. Phys. Chem. Lett. 6(17), 3503–3509 (2015)

    Article  CAS  Google Scholar 

  39. A. Goyal, S. McKechnie, D. Pashov, W. Tumas, M. Van Schilfgaarde, V. Stevanović, Origin of pronounced nonlinear band gap behavior in lead-tin hybrid perovskite alloys. Chem. Mater. 30(11), 3920–3928 (2018)

    Article  CAS  Google Scholar 

  40. Y. Takahashi, R. Obara, Z.-Z. Lin, Y. Takahashi, T. Naito, T. Inabe, S. Ishibashi, K. Terakura, Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalt. Trans. 40(20), 5563–5568 (2011)

    Article  CAS  Google Scholar 

  41. T. Leijtens, R. Prasanna, A. Gold-Parker, M.F. Toney, M.D. McGehee, Mechanism of tin oxidation and stabilization by lead substitution in tin halide perovskites. ACS Energy Lett. 2(9), 2159–2165 (2017)

    Article  CAS  Google Scholar 

  42. J. Tong, Z. Song, D.H. Kim, X. Chen, C. Chen, A.F. Palmstrom, P.F. Ndione, M.O. Reese, S.P. Dunfield, O.G. Reid, J. Liu, F. Zhang, S.P. Harvey, Z. Li, S.T. Christensen, G. Teeter, D. Zhao, M.M. Al-Jassim, M.F.A.M. Van Hest, M.C. Beard, S.E. Shaheen, J.J. Berry, Y. Yan, K. Zhu, Carrier lifetimes of >1 μs in Sn-Pb perovskites enable efficient all-perovskite tandem solar cells. Science 364(6439), 475–479 (2019)

    Article  CAS  Google Scholar 

  43. R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang, M. Wei, M.I. Saidaminov, Y. Gao, J. Xu, M. Xiao, A. Li, J. Zhu, E.H. Sargent, H. Tan, Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(II) oxidation in precursor ink. Nat. Energy. 4(10), 864–873 (2019)

    Article  CAS  Google Scholar 

  44. K. Xiao, R. Lin, Q. Han, Y. Hou, Z. Qin, H.T. Nguyen, J. Wen, M. Wei, V. Yeddu, M.I. Saidaminov, Y. Gao, X. Luo, Y. Wang, H. Gao, C. Zhang, J. Xu, J. Zhu, E.H. Sargent, H. Tan, All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy. 5(11), 870–880 (2020)

    Article  CAS  Google Scholar 

  45. K.J. Savill, A.M. Ulatowski, M.D. Farrar, M.B. Johnston, H.J. Snaith, L.M. Herz, Impact of tin fluoride additive on the properties of mixed tin-lead iodide perovskite semiconductors. Adv. Funct. Mater. 30(52), 2005594 (2020)

    Article  CAS  Google Scholar 

  46. S.J. Lee, S.S. Shin, Y.C. Kim, D. Kim, T.K. Ahn, J.H. Noh, J. Seo, S. Il Seok, Fabrication of efficient formamidinium Tin iodide perovskite solar cells through SnF2-pyrazine Complex. J. Am. Chem. Soc. 138(12), 3974–3977 (2016)

    Article  CAS  Google Scholar 

  47. T.S. Ripolles, D. Yamasuso, Y. Zhang, M.A. Kamarudin, C. Ding, D. Hirotani, Q. Shen, S. Hayase, New Tin(II) Fluoride derivative as a precursor for enhancing the efficiency of inverted planar Tin/Lead perovskite solar cells. J. Phys. Chem. C. 122(48), 27284–27291 (2018)

    Article  CAS  Google Scholar 

  48. C. Li, Z. Song, D. Zhao, C. Xiao, B. Subedi, N. Shrestha, M.M. Junda, C. Wang, C.S. Jiang, M. Al-Jassim, R.J. Ellingson, N.J. Podraza, K. Zhu, Y. Yan, Reducing saturation-current density to realize high-efficiency low-bandgap mixed tin-lead halide perovskite solar cells. Adv. Energy Mater. 9(3), 1–9 (2019)

    Article  Google Scholar 

  49. W. Ke, C.C. Stoumpos, M. Zhu, L. Mao, I. Spanopoulos, J. Liu, O.Y. Kontsevoi, M. Chen, D. Sarma, Y. Zhang, M.R. Wasielewski, M.G. Kanatzidis, Enhanced photovoltaic performance and stability with a new type of hollow 3D perovskite {en}FASnI3. Sci. Adv. 3(8), e1701293 (2017)

    Article  CAS  Google Scholar 

  50. T. Leijtens, R. Prasanna, K.A. Bush, G.E. Eperon, J.A. Raiford, A. Gold-Parker, E.J. Wolf, S.A. Swifter, C.C. Boyd, H.P. Wang, M.F. Toney, S.F. Bent, M.D. McGehee, Tin-lead halide perovskites with improved thermal and air stability for efficient all-perovskite tandem solar cells. Sustain. Energy Fuels. 2(11), 2450–2459 (2018)

    Article  CAS  Google Scholar 

  51. C. Li, Z. Song, C. Chen, C. Xiao, B. Subedi, S.P. Harvey, N. Shrestha, K.K. Subedi, L. Chen, D. Liu, Y. Li, Y.-W. Kim, C. Jiang, M.J. Heben, D. Zhao, R.J. Ellingson, N.J. Podraza, M. Al-Jassim, Y. Yan, Low-bandgap mixed tin–lead iodide perovskites with reduced methylammonium for simultaneous enhancement of solar cell efficiency and stability. Nat. Energy. 5(10), 768–776 (2020)

    Article  CAS  Google Scholar 

  52. R. Prasanna, T. Leijtens, S.P. Dunfield, J.A. Raiford, E.J. Wolf, S.A. Swifter, J. Werner, G.E. Eperon, C. de Paula, A.F. Palmstrom, C.C. Boyd, M.F.A.M. van Hest, S.F. Bent, G. Teeter, J.J. Berry, M.D. McGehee, Design of low bandgap tin–lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability. Nat. Energy. 4(11), 939–947 (2019)

    Article  CAS  Google Scholar 

  53. Y. Li, J.V. Milić, A. Ummadisingu, J.-Y. Seo, J.-H. Im, H.-S. Kim, Y. Liu, M.I. Dar, S.M. Zakeeruddin, P. Wang, A. Hagfeldt, M. Grätzel, Bifunctional organic spacers for formamidinium-based hybrid dion-jacobson two-dimensional perovskite solar cells. Nano Lett. 19(1), 150–157 (2019)

    Article  CAS  Google Scholar 

  54. M. Wei, K. Xiao, G. Walters, R. Lin, Y. Zhao, M.I. Saidaminov, P. Todorović, A. Johnston, Z. Huang, H. Chen, A. Li, J. Zhu, Z. Yang, Y.K. Wang, A.H. Proppe, S.O. Kelley, Y. Hou, O. Voznyy, H. Tan, E.H. Sargent, Combining efficiency and stability in mixed tin-lead perovskite solar cells by capping grains with an ultrathin 2D layer. Adv. Mater. 32(12), 1–8 (2020)

    Article  Google Scholar 

  55. E.T. Hoke, D.J. Slotcavage, E.R. Dohner, A.R. Bowring, H.I. Karunadasa, M.D. McGehee, Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6(1), 613–617 (2015)

    Article  CAS  Google Scholar 

  56. T. Duong, H.K. Mulmudi, Y. Wu, X. Fu, H. Shen, J. Peng, N. Wu, H.T. Nguyen, D. Macdonald, M. Lockrey, T.P. White, K. Weber, K. Catchpole, Light and electrically induced phase segregation and its impact on the stability of quadruple cation high bandgap perovskite solar cells. ACS Appl. Mater. Interfaces. 9(32), 26859–26866 (2017)

    Article  CAS  Google Scholar 

  57. G.F. Samu, C. Janáky, P.V. Kamat, A victim of halide ion segregation. How light soaking affects solar cell performance of mixed halide lead perovskites. ACS Energy Lett. 2(8), 1860–1861 (2017)

    Article  CAS  Google Scholar 

  58. W. Mao, C.R. Hall, S. Bernardi, Y.-B. Cheng, A. Widmer-Cooper, T.A. Smith, U. Bach, Light-induced reversal of ion segregation in mixed-halide perovskites. Nat. Mater. 20(1), 55–61 (2021)

    Article  CAS  Google Scholar 

  59. X. Zhou, L. Zhang, X. Wang, C. Liu, S. Chen, M. Zhang, X. Li, W. Yi, B. Xu, Highly efficient and stable GABr-modified ideal-bandgap (1.35 eV) Sn/Pb perovskite solar cells achieve 20.63% efficiency with a record small Voc deficit of 0.33 V. Adv. Mater. 32(14), 1908107 (2020)

    Article  CAS  Google Scholar 

  60. Y. Zhou, Y.H. Jia, H.H. Fang, M.A. Loi, F.Y. Xie, L. Gong, M.C. Qin, X.H. Lu, C.P. Wong, N. Zhao, Composition-tuned wide bandgap perovskites: from grain engineering to stability and performance improvement. Adv. Funct. Mater. 28(35), 1–8 (2018)

    Article  CAS  Google Scholar 

  61. J. Xu, C.C. Boyd, Z.J. Yu, A.F. Palmstrom, D.J. Witter, B.W. Larson, R.M. France, J. Werner, S.P. Harvey, E.J. Wolf, W. Weigand, S. Manzoor, M.F.A.M. Van Hest, J.J. Berry, J.M. Luther, Z.C. Holman, M.D. McGehee, Triple-halide wide-band gap perovskites with suppressed phase segregation for efficient tandems. Science 367(6482), 1097–1104 (2020)

    Article  CAS  Google Scholar 

  62. Y. Wang, M. Ibrahim Dar, L.K. Ono, T. Zhang, M. Kan, Y. Li, L. Zhang, X. Wang, Y. Yang, X. Gao, Y. Qi, M. Grätzel, Y. Zhao, Thermodynamically stabilized b-CsPbI3–based perovskite solar cells with efficiencies >18%. Science 365(6453), 591–595 (2019)

    Article  CAS  Google Scholar 

  63. Y. Yuan, J. Huang, Ion Migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49(2), 286–293 (2016)

    Article  CAS  Google Scholar 

  64. Y. Zhou, F. Wang, Y. Cao, J.-P. Wang, H.-H. Fang, M.A. Loi, N. Zhao, C.-P. Wong, Benzylamine-treated wide-bandgap perovskite with high thermal-photostability and photovoltaic performance. Adv. Energy Mater. 7(22), 1701048 (2017)

    Article  CAS  Google Scholar 

  65. S. Gharibzadeh, B. Abdollahi Nejand, M. Jakoby, T. Abzieher, D. Hauschild, S. Moghadamzadeh, J.A. Schwenzer, P. Brenner, R. Schmager, A.A. Haghighirad, L. Weinhardt, U. Lemmer, B.S. Richards, I.A. Howard, U.W. Paetzold, Record open-circuit voltage wide-bandgap perovskite solar cells utilizing 2D/3D perovskite heterostructure. Adv. Energy Mater. 9(21), 1–10 (2019)

    Google Scholar 

  66. G.E. Eperon, K.H. Stone, L.E. Mundt, T.H. Schloemer, S.N. Habisreutinger, S.P. Dunfield, L.T. Schelhas, J.J. Berry, D.T. Moore, G.E. Eperon, D.T. Moore, The role of dimethylammonium in bandgap modulation for stable halide Perovskites. ACS Energy Lett. 5(6), 1856–1864 (2020)

    Article  CAS  Google Scholar 

  67. R.J. Stoddard, A. Rajagopal, R.L. Palmer, I.L. Braly, A.K.-Y. Jen, H.W. Hillhouse, Enhancing defect tolerance and phase stability of high-bandgap perovskites via guanidinium alloying. ACS Energy Lett. 3(6), 1261–1268 (2018)

    Article  CAS  Google Scholar 

  68. I. Spanopoulos, W. Ke, C.C. Stoumpos, E.C. Schueller, O.Y. Kontsevoi, R. Seshadri, M.G. Kanatzidis, Unraveling the chemical nature of the 3D “Hollow” hybrid halide Perovskites. J. Am. Chem. Soc. 140(17), 5728–5742 (2018)

    Article  CAS  Google Scholar 

  69. Y. Fu, M.T. Rea, J. Chen, D.J. Morrow, M.P. Hautzinger, Y. Zhao, D. Pan, L.H. Manger, J.C. Wright, R.H. Goldsmith, S. Jin, Selective Stabilization and photophysical properties of metastable Perovskite polymorphs of CsPbI3 in thin films. Chem. Mater. 29(19), 8385–8394 (2017)

    Article  CAS  Google Scholar 

  70. A. De Vos, Detailed balance limit of the efficiency of tandem solar cells. J. Phys. D. Appl. Phys. 13(5), 839–846 (1980)

    Article  Google Scholar 

  71. A. Martí, G.L. Araújo, Limiting efficiencies for photovoltaic energy conversion in multigap systems. Sol. Energy Mater. Sol. Cells. 43(2), 203–222 (1996)

    Article  Google Scholar 

  72. J.F. Geisz, R.M. France, K.L. Schulte, M.A. Steiner, A.G. Norman, H.L. Guthrey, M.R. Young, T. Song, T. Moriarty, Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration. Nat. Energy. 5(4), 326–335 (2020)

    Article  CAS  Google Scholar 

  73. D.P. McMeekin, S. Mahesh, N.K. Noel, M.T. Klug, J.C. Lim, J.H. Warby, J.M. Ball, L.M. Herz, M.B. Johnston, H.J. Snaith, Solution-processed all-Perovskite multi-junction solar cells. Joule 3(2), 387–401 (2019)

    Article  CAS  Google Scholar 

  74. J. Wang, V. Zardetto, K. Datta, D. Zhang, M.M. Wienk, R.A.J. Janssen, 16.8% Monolithic all-perovskite triple-junction solar cells via a universal two-step solution process. Nat. Commun. 11(1), 1–10 (2020)

    CAS  Google Scholar 

  75. K. Xiao, J. Wen, Q. Han, R. Lin, Y. Gao, S. Gu, Y. Zang, Y. Nie, J. Zhu, J. Xu, H. Tan, Solution-processed monolithic all-perovskite triple-junction solar cells with efficiency exceeding 20%. ACS Energy Lett. 5(9), 2819–2826 (2020)

    Article  CAS  Google Scholar 

  76. J.H. Heo, S.H. Im, CH3NH3PbBr3–CH3NH3PbI3 Perovskite–Perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv Mater 28(25), 5121–5125 (2016)

    Article  CAS  Google Scholar 

  77. D. Forgács, L. Gil-Escrig, D. Pérez-Del-Rey, C. Momblona, J. Werner, B. Niesen, C. Ballif, M. Sessolo, H.J. Bolink, Efficient monolithic Perovskite/Perovskite tandem solar cells. Adv. Energy Mater. 7(8), 1–6 (2017)

    Article  CAS  Google Scholar 

  78. A. Rajagopal, Z. Yang, S.B. Jo, I.L. Braly, P.-W. Liang, H.W. Hillhouse, A.K.Y. Jen, Highly efficient Perovskite-Perovskite tandem solar cells reaching 80% of the theoretical limit in photovoltage. Adv. Mater. 29(34), 1702140 (2017)

    Article  CAS  Google Scholar 

  79. R. Sheng, A.W.Y. Ho-Baillie, S. Huang, M. Keevers, X. Hao, L. Jiang, Y.-B. Cheng, M.A. Green, Four-terminal tandem solar cells using CH3NH3PbBr3 by spectrum splitting. J. Phys. Chem. Lett. 6(19), 3931–3934 (2015)

    Article  CAS  Google Scholar 

  80. Z. Yang, A. Rajagopal, C.-C. Chueh, S.B. Jo, B. Liu, T. Zhao, A.K.Y. Jen, Stable low-bandgap Pb-Sn binary perovskites for tandem solar cells. Adv. Mater. 28(40), 8990–8997 (2016)

    Article  CAS  Google Scholar 

  81. D. Zhao, Y. Yu, C. Wang, W. Liao, N. Shrestha, C.R. Grice, A.J. Cimaroli, L. Guan, R.J. Ellingson, K. Zhu, X. Zhao, R.-G. Xiong, Y. Yan, Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells. Nat. Energy. 2(4), 17018 (2017)

    Article  CAS  Google Scholar 

  82. D. Zhao, C. Wang, Z. Song, Y. Yu, C. Chen, X. Zhao, K. Zhu, Y. Yan, Four-terminal all-perovskite tandem solar cells achieving power conversion efficiencies exceeding 23%. ACS Energy Lett. 3(2), 305–306 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Korea Electric Power Corporation (R18XA06-42) and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) funded by the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea (No. 20193091010310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Young Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, Y.J., Ji, S.G. & Kim, J.Y. Monolithic all-perovskite tandem solar cells: recent progress and challenges. J. Korean Ceram. Soc. 58, 399–413 (2021). https://doi.org/10.1007/s43207-021-00117-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43207-021-00117-5

Keywords

Navigation