Skip to main content
Log in

Geochemistry of metasedimentary clastic rocks from Dhanjori and Badampahar Groups, Singhbhum Craton, Eastern India: implications for tectonic setting and Archean–Proterozoic boundary

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

This work intends to present a comprehensive geological and geochemical study of the metasedimentary clastic rocks from Dhanjori and Badampahar Groups, Singhbhum Craton, Eastern India. It is a contribution for understanding the source area weathering, tectonic setting, and to define the Archean–Proterozoic boundary in eastern India for the first time in the study area. The sediments from three stratigraphic levels in Dhanjori and Badampahar Groups of Singhbhum Craton display great diversity in major, trace, and rare earth element geochemistry. In bivariate diagrams of TiO2 vs. Zr, and discriminant function 1 vs. discriminant function 2 (DF-1 vs. DF-2) were used for depicting the provenance of these sequences, and all the samples of the study area fall in the felsic igneous rocks and granites and gneisses field. Besides, the values of Pb, U, Th, Y, La, Ce, and low Sc with high critical trace elemental ratios of Th/U, Th/Sc, Zr/Y, and La/Sc in quartz-pebble conglomerate (QPC) indicating their derivation from the felsic igneous source. The QPC-quartzite sequence of Dhanjori Group is characterized by light rare earth element (LREE) enrichment, nearly flat heavy rare earth element (HREE) (Gd/Yb)N, and enrichment of Eu anomaly, corroborating felsic province in the source area. The quartzite of the Badampahar Group is formed in depleted mantle source or mafic–ultramafic rocks which are supported by the presence of low concentrations of Th and Sc, low values of Zr/Y, La/Sc, Th/Sc, Th/Co, La/Co, and Th/U ratios, enrichment of Co + Cr + Sc and depletion of HREE. The values of (La/Sm)N, (Gd/Yb)N, and Eu anomaly is also attributed to a provenance from mafic–ultramafic source rocks. In Al2O3/SiO2 vs. Fe2O3 + MgO, TiO2 vs. Fe2O3 + MgO, and SiO2 vs. K2O/Na2O diagrams, all the samples of the study area dominantly come in the field of passive margin tectonic setting except few samples fall in the active continental margin, oceanic island arc, and continental arc fields, respectively. Based on the above-mentioned geochemical data and field observations, the erosional unconformity signed by conglomerates at the base of Dhanjori Group represents the transition between the crustal composition from dominantly mafic–ultramafic to granitic–granodioritic. Therefore, occurrences of QPC may define the Archean–Proterozoic boundary between the Singhbhum Granite Phase-B and the Dhanjori Group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acharyya, S. K., Gupta, A., & Orihashi, Y. (2010a). New U-Pb zircon ages from Palaeo- Mesoarchaean TTG gneisses of the Singhbhum Craton, eastern India. Geochemical Journal, 44, 81–88. https://doi.org/10.2343/geochemj.1.0046

    Article  Google Scholar 

  • Acharyya, S. K., Gupta, A., & Orihashi, Y. (2010b). Neoarchean- Paleoproterozoic stratigraphy of the Dhanjori basin, Singhbhum Craton, Eastern India: And recording of a few U-Pb zircon dates from its basal part. Journal of Asian Earth Science, 39, 527–536. https://doi.org/10.1016/jseaes.2010.04.023

    Article  Google Scholar 

  • Akarish, A. I. M., & El-Gohary, A. M. (2011). Provenance and source area weathering derived from the geochemistry of Pre-Cenomanian sandstones, east Sinai, Egypt. Egyptian Journal of Applied Sciences, 11(17), 3070–3088. https://doi.org/10.3923/jas.2011.3070.3088

    Article  Google Scholar 

  • Allen, J. R. L. (1980). Sand waves: a model of origin and internal structures. Sedimentary Geology, 26, 281–328.

    Article  Google Scholar 

  • Bastow, I. D., Thompson, D. A., Wookey, J., Kendall, J. M., Helffrich, G., Snyder, D. B., Eaton, D. W., & Darbyshire, F. (2011). Precambrian plate tectonics: seismic evidence from northern Hudson Bay, Canada. Geology, 39(1), 91–94. https://doi.org/10.1130/G31396.1

    Article  Google Scholar 

  • Bergen, L., & Fayek, M. (2012). Petrography and geochronology of the Pele Mountain quartz pebble conglomerate uranium deposit, Elliot Lake District, Canada. American Mineralogist, 97, 1274–1283. https://doi.org/10.2138/am.2012.4040

    Article  Google Scholar 

  • Bhatia, M. R. (1983). Plate tectonics and geochemical composition of sandstones. Journal of Geology, 91, 611–627.

    Article  Google Scholar 

  • Bhatia, M. R., & Crook, K. A. W. (1986). Trace elements characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology, 92, 181–193. https://doi.org/10.1007/BF00375292

    Article  Google Scholar 

  • Bhattacharya, H. N., & Mahapatra, S. (2007). Evolution of Proterozoic rift margin sediments, north Singhbhum mobile belt, Jharkhand-Orissa, India. Precambrian Research, 162, 302–316. https://doi.org/10.1016/j.precamres.2007.07.021

    Article  Google Scholar 

  • Bhushan, S. K., & Sahoo, P. (2010). Geochemistry of clastic sediments from Sargur Supracrustals and Bababudan Group, Karnataka: Implications on Archean-Proterozoic Boundary. Journal of the Geological Society of India, 75(6), 829–840. https://doi.org/10.1007/s12594-010-0068-y

    Article  Google Scholar 

  • Chakrabarti, K., Ecka, N. R. R., Mishra, B., Mahendra Kumar, K., Katti, V. J., Umamaheswar, K., Parihar, P. S., Mukhopadhyay, J., & Ghosh, G. (2013). Gold, silver and platinum group of elements mineralization in Precambrian uraniferous quartz-pebble conglomerates of Mankarhachua area, Angul District, Odisha. Current Science, 105(7), 978–983.

    Google Scholar 

  • Chakrabarti, K., Ecka, N. R. R., Mishra, B., Ramesh Babu, P. V., & Parihar, P. S. (2011). Paleaoproterozoic Quartz-Pebble Conglomerate Type Uranium Mineralisation in Mankarhachua Area, Angul District, Orissa. Journal of the Geological Society of India, 77(5), 443–449. https://doi.org/10.1007/s12594-011-0046-z

    Article  Google Scholar 

  • Chaudhuri, T., Satish, M., Mazumder, R., & Biswas, S. (2017). Geochemistry and Sm-Nd isotopic characteristics of the Paleoarchean Komatiites from Singhbhum Craton, Eastern India and their implications. Precambrian Research, 298, 385–402. https://doi.org/10.1016/j.precamres.2017.06.014

    Article  Google Scholar 

  • Condie, K. C. (1989). Geochemical changes in basalts and andesites across the Archean-Proterozoic boundary: Identification and significance. Lithos, 23, 1–18. https://doi.org/10.1016/0024-4937(89)90020-0

    Article  Google Scholar 

  • Condie, K. C. (1993). Chemical composition and evolution of the upper continental crust. Contrasting results from surface samples and shales. Chemical Geology, 104, 1–37. https://doi.org/10.1016/0009-2541(93)90140-E

    Article  Google Scholar 

  • Condie, K. C. (2006). Archean geodynamics: similar to or different from modern geodynamics? Geophysical Monograph Series 164. Washington, DC, American Geophysical Union. https://doi.org/10.1029/164GM05

    Article  Google Scholar 

  • Condie, K. C., & Wronkiewicz, D. J. (1990). The Cr/Th ratio in Precambrian pelites from the Kaapvaal craton as an index of craton evolution. Earth and Planetary Science Letters, 97, 256–267.

    Article  Google Scholar 

  • Cullers, R. L. (2000). Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Research, 104(1), 77–93. https://doi.org/10.1016/S0301-9268(00)00090-5

    Article  Google Scholar 

  • Cullers, R. L., Basu, A., & Suttner, L. J. (1988). Geochemical signatures of provenance in sand-mixed material in soils and stream sediments near the Tobacco root batholith, Montana, USA. Chemical Geology, 70, 335–348.

    Article  Google Scholar 

  • Cullers, R. L., & Graf, J. (1983). Rare earth elements in igneous rocks of the continental crust: intermediate and silicic rocks, ore petrogenesis. In P. Henderson (Ed.), Rare earth geochemistry (pp. 275–312). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-444-42148-7.50013-7.

  • Das, A. K., Awati, A. B., & Sahoo, P. (1988). Quartz-pebble conglomerates of the Singhbhum Craton, Bihar and Orissa. Memoirs of the Geological Society of India, 9, 83–87.

    Google Scholar 

  • Donaldson, J. A., & de Kemp, E. A. (1998). Archean quartz arenites in the Canadian shield: Examples from the Superior and Churchill provinces. Sedimentary Geology, 120, 153–176. https://doi.org/10.1016/S0037-0738(98)00031-1

    Article  Google Scholar 

  • Dunn, J. A., & Dey, A. K. (1942). The geology and petrology of Eastern Singhbhum and surrounding areas. Memoirs of the Geological Society of India, 69(2), 281–456.

    Google Scholar 

  • Eriksson, K. A. (1978). Alluvial and destructive beach facies from the Archean Moodies Group, Barberton Mountain Land, South Africa and Swaziland. Canadian Society of Petroleum Geologists Memoirs, 5, 287–311.

    Google Scholar 

  • Eriksson, P. G., Mazumder, R., Catuneanu, O., Bumby, A. J., & IIonda, B. O. (2006). Precambrian continental freeboard and geological evolution: A time perspective. Earth Science Review, 79, 165–204.

    Article  Google Scholar 

  • Fedo, C. M., & Eriksson, K. A. (1996). Stratigraphic framework of the ~ 3 Ga Buhwa greenstone belt: a unique stable shelf succession in the Zimbabwe Archean craton. Precambrian Research, 77(3–4), 161–178. https://doi.org/10.1016/0301-9268(95)00053-4

    Article  Google Scholar 

  • Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.

    Article  Google Scholar 

  • Feng, R., & Kerrich, R. (1990). Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: Implications for provenance and tectonic setting. Geochimica Et Cosmochimica Acta, 54, 1061–1081. https://doi.org/10.1016/0016-7037(90)90439-R

    Article  Google Scholar 

  • Floyd, P. A., Winchester, J. A., & Park, R. G. (1989). Geochemistry and tectonic setting of Lewisian clastic metasediments from early Proterozoic Loch Maree Group of Gairloch, N.W, Scotland. Precambrian Research, 45(1–3), 203–214.

    Article  Google Scholar 

  • Frimmel, H. E., & Minter, W. E. L. (2002). Recent developments concerning the geological history and genesis of the Witwatersrand gold deposits, South Africa. In Society of economic geology special publication no. 9 (pp.17–45).

  • Garde, A. A. (2007). A mid-Archean island arc complex in the eastern Akia terrane, Godthäbsfjord, southern West Greenland. Journal of the Geological Society of London, 164, 565–579. https://doi.org/10.1144/0016-76492005-107

    Article  Google Scholar 

  • Ghosh, S., De, S., & Mukhopadhyay, J. (2016). Provenance of >2.8 Ga Keonjhar Quartzite, Singhbhum Craton, Eastern India: Implications for the Nature of Mesoarchean Upper Crust and Geodynamics. Journal of Geology, 124(3), 331–351.

    Article  Google Scholar 

  • Gibbs, A. K., Montgomery, C. W., O’Day, P. A., & Erslev, E. A. (1986). The Archean/Proterozoic transition: Evidence from the geochemistry of metasedimentry rocks of Guyana and Montana. Geochimica Et Cosmochimica Acta, 50, 2125–2141. https://doi.org/10.1016/0016-7037(86)90067-0

    Article  Google Scholar 

  • Goswami, J. N., Misra, S., Wiedenbeck, M., Ray, S. L., & Saha, A. K. (1995). 207Pb/206Pb ages from the OMG, the oldest recognized rock unit from Singhbhum-Orissa Iron Ore craton E. India. Current Science, 69(12), 1008–1012.

    Google Scholar 

  • Gupta, A., Basu, A., & Singh, S. K. (1985). Stratigraphy and petrochemistry of Dhanjori Greenstone belt, Eastern India. Quarterly Journal of the Geological, Mining, and Metallurgical Society of India, 57, 248–263.

    Google Scholar 

  • Hamilton, W. B. (2013). Evolution of the Archean Mohorovičić discontinuity from a synaccretionary 4.5 Ga protocrust. Tectonophysics, 609, 706–733. https://doi.org/10.1016/j.tecto.2013.08.009

    Article  Google Scholar 

  • Haque, M. W., & Dutta, S. K. (2001). Investigation for gold mineralization in the quartz-pebble conglomerates and associated rocks in the southern part of Dhanjori basin, East Singhbhum district, Bihar. Records of the Geological Survey of India, 132(3), 155–162.

    Google Scholar 

  • Hayashi, K., Fujisawa, H., Holland, H., & Ohmoto, H. (1997). Geochemistry of ∼1.9 Ga sedimentary rocks from northeastern Labrador Canada. Geochimica Et Cosmochimica Acta, 61(19), 4115–4137. https://doi.org/10.1016/S0016-7037(97)00214-7

    Article  Google Scholar 

  • Heron, M. M. (1988). Geochemical classification of terrigenous sands and shales from core and log data. Journal of Sedimentary Research, 58(5), 820–829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Iyenger, S. V. P., & Alwar, M. A. A. (1965). The Dhanjori eugeosyncline and its bearing on the Stratigraphy of Singhbhum, Keonjhar and Mayurbhanj district. In DN Wadia commen volume of mineral geology and metallogeny Institute (pp. 138–162).

  • Jena, B. K. (1987). Report on the preliminary investigation for Gold lode in Mayurbhanj district, Orissa. Unpublished Report of the Geological Survey of India, F.S. 1986–87.

  • Jena, B. K., & Behera, U. K. (1998). The oldest supracrustals belt from Singhbhum craton and its possible correlation. Precambrian Crust in Eastern and Central India. In Proceedings of the international seminar UNESCO-IUGS-368, Geological Survey of India Special Publication (Vol. 57, pp. 106–121).

  • Jena, B. K., & Mohanty, A. M. (1989). Some significant finds from Orissa. News, Eastern Region, Geological Survey of India, 9, 8–9.

    Google Scholar 

  • Kato, Y., Ohta, L., Tsunematsu, T., Watanabe, Y., Isozaki, Y., Maruyama, S., & Imai, N. (1998). Rare earth element variations in mid-Archean banded iron formations: implications for the chemistry of the ocean and continental and plate tectonics. Geochimica Et Cosmochimica Acta, 62(21/22), 3475–3497. https://doi.org/10.1016/S0016-7037(98)00253-1

    Article  Google Scholar 

  • Korja, A., Korja, T., Luosto, U., & Heikkinen, P. (1993). Seismic and geoelectric evidence for collisional and extensional events in the Fennoscandian shield-implications for Precambrian crustal evolution. Tectonophysics, 219(1), 129–152. https://doi.org/10.1016/0040-1951(93)90292-R

    Article  Google Scholar 

  • Kroonenberg, S. B. (1994). Effects of provenance, sorting and weathering on the geochemistry of fluvial sands from different tectonic and climatic environments. In Proceedings of the 29th international geological congress, Part A (pp.69–81).

  • Kumar, A., Birua, S. N. S., Pande, D., Nath, A. R., Ramesh Babu, P. V., & Pandit, S. A. (2009). Radioactive quartz-pebble conglomerates from western margin of Bonai Granite pluton, Sundargarh district, Orissa—A new find. Journal of the Geological Society of India, 73(4), 537–542. https://doi.org/10.1007/s12594-009-0037-5

    Article  Google Scholar 

  • Kumar, A., Mishra, B., Chakrabarti, K., Ecka, N. R. R., Ramesh Babu, P. V., & Parihar, P. S. (2011). Petrographic and geochemical characterization of quartz-pebble conglomerates from Koira and Daitari basins of Orissa. Indian Mineralogist, Mineralogical Society of India, Mysore, Golden Jubilee, 45(1), 9–23.

    Google Scholar 

  • Kumar, A., Venkatesh, A. S., Kumar, P., Rai, A. K., & Parihar, P. S. (2017). Geochemistry of Archean Radioactive Quartz Pebble Conglomerates and Quartzites from western margin of Singhbhum-Orissa Craton, eastern India: Implications on Paleo-weathering, provenance and tectonic setting. Ore Geology Review, 89, 390–406. https://doi.org/10.1016/j.oregeorev.2017.06.014

    Article  Google Scholar 

  • Kumar, A., Venkatesh, A. S., Ramesh Babu, P. V., & Nayak, S. (2012). Genetic implications of Rare Uraninite and Pyrite in Quartz-Pebble Conglomerates from Sundargarh District of Orissa, Eastern India. Journal of the Geological Society of India, 79(3), 279–286. https://doi.org/10.1007/s12594-012-0040-0

    Article  Google Scholar 

  • Lahtinen, R., Huhma, H., Lahaye, Y., Kousa, J., & Luukas, J. (2015). Archean-Proterozoic collision boundary in central Fennoscandia: Revisited. Precambrian Research, 261, 127–165.

    Article  Google Scholar 

  • Lehtonen, M., & O’Brien, H. (2009). Mantle transect of the Karelian craton from margin to core based on P-T data from garnet and clinopyroxene xenocrysts in kimberlites. Bulletin of Geological Society of Finland, 81(2), 79–102. https://doi.org/10.17741/bgsf/81.2.001

    Article  Google Scholar 

  • Mahadevan, T. M. (1986). Space-time controls in Precambrian uranium mineralisation in India. Journal of Geological Society of India, 27(1), 47–62.

    Google Scholar 

  • Mazumder, R. (2002). Sedimentation history of the Dhanjori and Chaibasa Formations, eastern India and its implications. Ph.D thesis (unpublished), Jadavpur University, Kolkata, India (p. 119).

  • Mazumder, R. (2005). Proterozoic sedimentation and volcanism in the Singhbhum crustal province India and Their Implications. Sedimentary Geology, 176(1), 167–193. https://doi.org/10.1016/j.sedgeo.2004.12.011

    Article  Google Scholar 

  • Mazumder, R., & Eriksson, P. G. (2015). Precambrian basins of India: stratigraphic and tectonic context. Geological Society of London Memoirs, 43, 352p. https://doi.org/10.1515/logos-2016-0027

    Article  Google Scholar 

  • Mazumder, R., & Sarkar, S. (2004). Sedimentation history of the Palaeoproterozoic Dhanjori Formation, Singhbhum, eastern India. Precambrian Research, 130(1), 267–287. https://doi.org/10.1016/j.precamres.2003.12.005

    Article  Google Scholar 

  • McLennan, S. M. (1989). Rare earth elements in sedimentary rocks—Influence of provenance and sedimentary processes. Mineralogical Society of America Review Minerals, 21, 169–200.

    Google Scholar 

  • McLennan, S. M., & Taylor, S. R. (1991). Sedimentary rocks and crustal evolution: Tectonic setting and secular trends. Journal of Geology, 99(1), 1–21. https://doi.org/10.1086/629470

    Article  Google Scholar 

  • Meert, J. G., & Pandit, M. K. (2015). The Archaean and Proterozoic history of Peninsular India: Tectonic framework for Precambrian sedimentary basins in India. In R. Mazumder, P. G. Eriksson (Eds.), Precambrian basins of India: Stratigraphic and tectonic context (Vol. 43, No. 1, pp. 29–54). Geological Society of London Memoirs. https://doi.org/10.1144/M43.3

  • Meert, J. G., Pandit, M. K., Pradhan, V. R., Banks, J., Sirianni, R., Stroud, M., Newstead, B., & Gifford, J. (2010). Precambrian crustal evolution of Peninsular India: A 3.0 billion year odyssey. Journal of Asian Earth Science, 39, 483–515.

    Article  Google Scholar 

  • Miall, A. D., Catuneanu, O., Eriksson, P. G., & Mazumder, R. (2015). In Precambrian Basins of India: Stratigraphic and Tectonic Context, A brief synthesis of Indian Precambrian basins: classification and genesis of basin-fills. Geological Society of London Memoirs, 43, 339–347. https://doi.org/10.1144/M43.23

    Article  Google Scholar 

  • Mishra, B., Pande, D., Gogoi, J., Kumar, A., Ramesh Babu, P. V., & Parihar, P. S. (2008). Quartz-Pebble Conglomerate Type Uranium Mineralization in Balia-Rankia Area of Daitari-Tomka basin, Jaipur district, Orissa. Journal of Exploration, Research of Atomic Minerals, 18, 1–14.

    Google Scholar 

  • Mishra, K. S., Durairaju, S., Rajasekharan, P., & Das, A. K. (1997). Occurrence of U-Au-REE bearing quartz-pebble conglomerate at Sayamba-Taldih, Sundargarh district, Orissa. Journal of the Geological Society of India, 50, 93–94.

    Google Scholar 

  • Misra, S. (2006). Precambrian chronostratigraphic growth of Singhbhum-Orissa Craton, eastern Indian Shield: an alternative model. Journal of the Geological Society of India, 67(3), 356–378.

    Google Scholar 

  • Misra, S., Deomurari, M. P., Wiedenbeck, M., Goswami, J. N., Ray, S. L., & Saha, A. K. (1999). 207Pb/206Pb zircon ages and the evolution of Singhbhum craton, eastern India: An ion microprobe study. Precambrian Research, 93, 139–151.

    Article  Google Scholar 

  • Misra, S., & Johnson, P. T. (2005). Geochronological constraints on evolution of the Singhbhum Mobile belt and associated basic volcanic of Eastern India Shield. Gondwana Research, 8(2), 129–142. https://doi.org/10.1016/S1342-937X(05)71113-8

    Article  Google Scholar 

  • Mukhopadhyay, D. (2001). The Archean nucleus of Singhbhum: The present state of knowledge. Gondwana Research, 4(3), 307–318. https://doi.org/10.1016/S1342-937X(05)70331-2

    Article  Google Scholar 

  • Mukhopadhyay, J., Ghosh, G., Zimmermann, U., Guha, S., & Mukherjee, T. (2012). A 3.51Ga bimodal volcanics-BIF-ultramafic succession from Singhbhum craton: Implications for Palaeoarchaean geodynamic processes from the oldest greenstone succession of the Indian subcontinent. Geology Journal, 47(2–3), 284–311. https://doi.org/10.1002/gj.1314

    Article  Google Scholar 

  • Mukhopadhyay, J., Mishra, B., Chakrabarti, K., Ghosh, G., & De, S. (2016). Uraniferous Paleoplacers of the Mesoarchean Mahagiri Quartzite, Singhbhum Craton, India: Depositional Controls, Nature and Source of > 3.0Ga Detrital Uraninites. Ore Geology, 72, 1290–1306.

    Article  Google Scholar 

  • Naqvi, S. M., Uday Raj, B., Subba Rao, D. V., Manikyamba, C., Nirmal Charan, S., Balaram, V., & Srinivasa Sarma, D. (2002). Geology and geochemistry of arenite–quartzwacke from the Late Archaean Sandur schist belt—Implications for provenance and accretion processes. Precambrian Research, 114(3), 177–197. https://doi.org/10.1016/S0301-9268(01)00227-3

    Article  Google Scholar 

  • Nelson, D. R., Bhattacharya, H. N., Thern, E. R., & Altermann, W. (2014). Geochemical and ion- microprobe U-Pb zircon constraints on the Archaean evolution of Singhbhum Craton, eastern India. Precambrian Research, 255, 412–432.

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717. https://doi.org/10.1038/299715a0

    Article  Google Scholar 

  • Nesbitt, H. W., & Young, G. M. (1984). Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica Et Cosmochimica Acta, 48(7), 1523–1534.

    Article  Google Scholar 

  • O'Brien, H., and Lehtonen, M. (2012). Craton mantle formation and structure of eastern Finland mantle: Evidence from kimberlite-derived mantle xenoliths, xenocrysts and diamonds. In From the Earth's core to outer space lecture notes in earth system science (Vol. 137, pp. 61–80) Berlin: Springer. https://doi.org/10.1007/978-3-642-25550-2_5.

  • Peltonen, P., & Brügmann, G. (2006). Origin of layered continental mantle (Karelian craton, Finland): Geochemical and Re–Os isotope constraints. Lithos, 89(3–4), 405–423. https://doi.org/10.1016/j.lithos.2005.12.013

    Article  Google Scholar 

  • Pettijohn, F. J., Potter, P. E., & Siever, R. (1972). Sand and sandstones (p. 583). Springer.

    Google Scholar 

  • Pettijohn, F. J., Potter, P. E., & Siever, R. (1987). Sand and sandstones (p. 518). Springer.

    Book  Google Scholar 

  • Radhakrishna, B. P., & Ramkrishna, M. (1988). Archaean-Proterozoic boundary in India. Journal of the Geological Society of India, 32, 263–278.

    Google Scholar 

  • Roscoe, S. M. (1973). The Huronian Supergroup, a Paleoaphebian succession showing evidence of atmospheric evolution. Geological Association of Canada, Special Paper no.12 (pp. 31–47).

  • Roser, B. P., & Korsch, R. J. (1986). Determination of tectonic setting of sandstone mudstone suites using SiO2 content and K2O/Na2O ratio. Journal of Geology, 94, 635–650.

    Article  Google Scholar 

  • Roser, B. P., & Korsch, R. J. (1988). Provenance signatures of sandstone-mudstone suites determined using discriminant functions analysis of major element data. Chemical Geology, 67, 119–139.

    Article  Google Scholar 

  • Roy, A., Sarkar, A., Jeyakumar, S., Aggrawal, S. K., & Ebihara, M. (2002). Sm-Nd age and mantle characteristics of the Dhanjori volcanic rocks Eastern India. Geochemical Journal, 36(5), 503–518. https://doi.org/10.2343/geochemj.36.503

    Article  Google Scholar 

  • Saha, A. K. (1994). Crustal evolution of Singhbhum-North Orissa, eastern India. Memoirs of the Geological Society of India, 27, 341p.

    Google Scholar 

  • Saha, D., & Mazumder, R. (2012). An overview of the Palaeoproterozoic geology of Peninsular India, and key stratigraphic and tectonic issues. In R. Mazumder, D. Saha (Eds.), Palaeoproterozoic of India (Vol. 365, No. 1, pp. 5–29). Geological Society of London Special Publicaton. https://doi.org/10.1144/SP365.2.

  • Sahoo, K. C., Srivastava, S. C., & Mahakul, J. P. (2010). Specisiled Thematic Mapping around Bisoi-Manada-Betjharan area of Badampahar-Gorumahisani belt in Mayurbhanj district, Odisha. Unpublished Report of the Geological Survey of India, F.S. 2007–2009.

  • Scarpelli, W. (1991). Precambrian auriferous quartz-pebble conglomerates in Brazil. In H. Gérard, F. Michel (Eds.), Gisements alluviaux d'or = Alluvial gold placers = Yacimientos aluviales de oro, (Colloques et Séminaires). Symp. Intern., sur les Gisements Alluviaux d'Or, La Paz (BOL) (pp. 261–273). La Paz: ORSTOM. 1991/06/03-05 (ISSN 0767-2896).

  • Smith, N. D., & Minter, W. E. L. (1980). Sedimentalogical controls of gold and uranium in two Witwatersrand palaeo-placers. Economic Geology, 75(1), 1–14.

    Article  Google Scholar 

  • Smithies, R. H., Champion, D., van Kranendonk, M., Howard, H., & Hickman, A. (2005). Modern-style subduction processes in the Mesoarchean: geochemical evidence from the 3.12 Ga Whundo intra-oceanic arc. Earth and Planetary Science Letters, 231(3–4), 221–237. https://doi.org/10.1016/j.epsl.2004.12.026

    Article  Google Scholar 

  • Srinivasan, G., & Ojakangas, R. W. (1986). Sedimentology of quartz-pebble conglomerates and quartzites of the Archean Bababudan Group, Dharwar craton, South India: Evidence for early crustal stability. Journal of Geology, 94(2), 199–214. https://doi.org/10.1086/629023

    Article  Google Scholar 

  • Sunilkumar, T. S., Krishna Rao, N., Palrecha, M. M., Parthasarathi, R., Shah, V. L., & Sinha, K. K. (1998). Mineralogical and geochemical characteristic of basal quartz-pebble conglomerates of Dhanjori Group, Singhbhum Craton, India and their significance. Journal of the Geological Society of India, 51(6), 761–776.

    Google Scholar 

  • Sunilkumar, T. S., Parthasarathi, R., Palrecha, M. M., Shah, V. L., Sinha, K. K., & Krishna Rao, N. (1996). Chemical age of detrital zircons from basal quartz-pebble conglomerates of Dhanjori Group, Singhbhum Craton, eastern India. Current Science, 71(6), 482–486.

    Google Scholar 

  • Suttner, L. J., & Dutta, P. K. (1986). Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. Journal of Sedimentary Petrology, 56, 329–345.

    Google Scholar 

  • Tait, J., Zimmermann, U., Miyazaki, T., Presnyakov, S., Chang, Q., Mukhopadhyay, J., & Sergeev, S. (2011). Possible juvenile Palaeoarchaean TTG magmatism in eastern India and its constraints for the evolution of the Singhbhum craton. Geological Magazine, 148(02), 340–347. https://doi.org/10.1017/S0016756810000920

    Article  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution (p. 311). Blackwell.

    Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (2009). Planetary crusts: Their composition, origin and evolution (p. 378). Cambridge: Cambridge University Press. https://doi.org/10.1017/CB09780511575358

  • Upadhyay, D., Chattopadhyay, S., Kooijman, E., Mezger, K., & Berndt, J. (2014). Magmatic and metamorphic history of Paleoarchean Tonalite-Trondhjemite-Granodiorite (TTG) Suite from the Singhbhum Craton, Eastern India. Precambrian Research, 252, 180–190. https://doi.org/10.1016/j.precamres.2014.07.011

    Article  Google Scholar 

  • Vearncombe, S., & Kerrich, R. (1999). Geochemistry and geodynamic setting of volcanic and plutonic rocks associated with early Archaean volcanogenic massive sulphide mineralization Pilbara Craton. Precambrian Research, 98(3–4), 243–270. https://doi.org/10.1016/S0301-9268(99)00052-2

    Article  Google Scholar 

  • Viswanath, R. V., Roy, M. K., Pandit, S. A., & Narayan Das, G. R. (1988). Uranium mineralization in the Quartz-Pebble Conglomerates of Dharwar Supergroup Karnataka. Memoirs of the Geological Society of India, 9, 33–41.

    Google Scholar 

  • Wronkiewicz, D. J., & Condie, K. C. (1987). Geochemistry of archean shales from the witwatersrand supergroup, South Africa: Source area weathering and provenance. Geochimica Et Cosmochimica Acta, 54, 2401–2416.

    Article  Google Scholar 

  • Wronkiewicz, D. J., & Condie, K. C. (1989). Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: Evidence for a 3.0 Ga old continental craton. Geochimica Et Cosmochimica Acta, 53(7), 1537–1549.

    Article  Google Scholar 

  • Yadav, P. K., Chaudhuri, T., & Das, A. (2016). Specialised Thematic Mapping in the transect between Luhakorha and Karanjia in the central part of Singhbhum Craton, Kendujhar district, Odisha. Unpublished Report of the Geological Survey of India, F.S. 2014–16.

  • Yadav, P. K., & Das, M. (2017a). Petrology, geochemistry and petrogenesis of Al-depleted komatiite from Badampahar-Gorumahisani Greenstone Belt of Eastern Iron Ore Group, Singhbhum Craton India. Indian Journal of Geosciences, 70(3 and 4), 313–328. 71(1).

    Google Scholar 

  • Yadav, P. K., & Das, M. (2017b). Geochemistry of Kapili Komatiite from Badampahar-Gorumahisani greenstone belt, Singhbhum craton, India and its resemblance with ‘Barberton Komatiite.’ International Journal of Research and Analytical Review, 4(4), 495–507.

    Google Scholar 

  • Yadav, P. K. (2017c). Incidence of uranium and thorium mineralization in quartz-pebble conglomerate of Koira Group, Singhbhum Craton, India. International Journal of Research and Analytical Review, 4(4), 484–488.

    Google Scholar 

  • Yadav, P. K., & Das, M. (2018). Gold, uranium and thorium mineralization in Paleoproterozoic quartz-pebble conglomerate of Dhanjori Group, Singhbhum Craton India. Indian Journal of Geosciences, 72(2), 139–150.

    Google Scholar 

  • Yadav, P. K., & Das, M. (2019a). Geochemistry of Mesoarchaean felsic tuff from Bonai-Kendujhar belt of Western Iron Ore Group, Singhbhum Craton, India: Implications for volcanic arc tectonic setting. Indian Journal of Geosciences, 73(1), 1–14.

    Google Scholar 

  • Yadav, P. K., & Das, M. (2019b). Anomalous high values of rare earth element in quartz-pebble conglomerate of Koira Group of Western Iron Ore Group Singhbhum Craton, India. Indian Journal of Geosciences, 73(2), 131–142.

    Google Scholar 

  • Yadav, P. K., Das, M., & Ray, S. (2020a). Petrochemical signatures of meta-andesite from Badampahar-Gorumahisani Greenstone Belt, Singhbhum Craton: Implication on Precambrian tectonic setting of the Eastern India Shield. Indian Journal of Geosciences, 74(1), 22–39.

    Google Scholar 

  • Yadav, P. K., & Das, M. (2020b). Komatiite from Eastern Iron Ore Group, Singhbhum Craton, India: Implication for Mantle Plume-Arc Tectonic Setting. International Journal of Science and Research, 9(8), 656–672. https://doi.org/10.21275/SR20810161355

    Article  Google Scholar 

  • Yadav, P. K., & Das, M. (2020c). Geochemistry of Siliciclastic Rocks from the Koira Group of Western Iron Ore Group, Singhbhum Craton, Eastern India: Implications for Provenance, Paleo-Weathering, and Tectonic Setting. International Journal of Science and Research, 9(12), 126–142. https://doi.org/10.21275/SR201201153123

    Article  Google Scholar 

  • Yadav, P. K., & Ghosh, A. (2013). Specialised Thematic Mapping around Kudarsahi-Kuchaiburi-Kuhisila area, Badampahar-Gorumahisani Belt, Mayurbhanj District, Odisha with special emphasis on search for gold mineralization. Unpublished Report of the Geological Survey of India, F.S. 2012–13.

  • Yadav, P. K., Pradhan, U. K., Mukherjee, A., Sar, R. N., Sahoo, P., & Das, M. (2015). Basic characterization of Kapili Komatiite from Badampahar-Gorumahisani Schist Belt, Singhbhum Craton, Odisha India. Indian Journal of Geosciences, 69(1), 1–12.

    Google Scholar 

  • Yadav, P. K., Sahoo, P., Pradhan, U. K., & Das, M. (2016). Komatiite from Mesoarchaean Badampahar-Gorumahisani greenstone belt, Singhbhum craton, eastern India: Petrogenetic affinity with ‘Barberton type’. In 35th international geological congress, Paper No. 671, Cape Town, South Africa.

Download references

Acknowledgements

The authors are sincerely obliged to the Director-General, Geological Survey of India for according necessary permission to publish this manuscript. We are also extremely grateful to the Deputy Director-General, Geological Survey of India, SU: Bihar for his constant cooperation, encouragement, guidance, and valuable suggestions during the finalization of the manuscript. The authors also thankful to the anonymous reviewers and team of the editorial committee for critical review along with constructive comments and suggestions provided on an earlier version of the manuscript has very much helped in improving the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar Yadav.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Mauro Cesar Geraldes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K., Das, M. Geochemistry of metasedimentary clastic rocks from Dhanjori and Badampahar Groups, Singhbhum Craton, Eastern India: implications for tectonic setting and Archean–Proterozoic boundary. J. Sediment. Environ. 6, 447–472 (2021). https://doi.org/10.1007/s43217-021-00061-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-021-00061-8

Keywords

Navigation