Skip to main content
Log in

Rare earth elements geochemistry of recent clastic sediments from different environments from part of the eastern coast of India

  • Original Article
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

Rare earth elements (REEs) geochemistry of recent clastic sediments from different environments from Visakhapatnam region, east coast of India was studied aiming to determine the influence of mineralogical composition on ΣREEs distribution patterns. The obtained results show that the concentration and distribution patterns of REEs are associated with the presence of heavy minerals in the clastic sediments. A strong relationship between REEs and monazite has been observed. The northern region of the study area showed high concentration values of REEs consistent with the increase in the monazite concentrations. The vertical distribution of REEs in the core samples taken from the coastal and red sediments appeared to be heterogeneous and not uniform. On the other hand, the spatial distribution of ΣREEs in the riverine environment showed an increasing trend in the downstream direction. The average concentration of ΣREEs was 273.06 µg/g, where light REEs are dominant with an average concentration of 253.09 µg/g. The fractionation patterns show that there are no significant variations in the oxidation condition along the present study area. The present study indicates the importance of studying the monazite in the coastal sediments north of Visakhapatnam, city, where it is the main source of REEs in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the author on reasonable request.

References

  • Alnour, I. A., Wagiran, H., Ibrahim, N., Hamzah, S., & Elias, M. S. (2017). Determination of the elemental concentration of uranium and thorium in the products and by-products of Amang tin tailings process. AIP Conference Proceedings, 1799(1), 30003.

    Article  Google Scholar 

  • Amalan, K., Ratnayake, A. S., Ratnayake, N. P., Weththasinghe, S. M., Dushyantha, N., Lakmali, N., & Premasiri, R. (2018). Influence of nearshore sediment dynamics on the distribution of heavy mineral placer deposits in Sri Lanka. Environmental Earth Sciences, 77(21), 737–750.

    Article  Google Scholar 

  • Amaral, J. C., & Morais, C. A. (2010). Thorium and uranium extraction from rare earth elements in monazite sulfuric acid liquor through solvent extraction. Minerals Engineering, 23(6), 498–503. https://doi.org/10.1016/j.mineng.2010.01.003.

    Article  Google Scholar 

  • Åström, M. (2001). Abundance and fractionation patterns of rare earth elements in streams affected by acid sulphate soils. Chemical Geology, 175(3–4), 249–258. https://doi.org/10.1016/S0009-2541(00)00294-1.

    Article  Google Scholar 

  • Azlina, M. J., Ismail, B., Yasir, M. S., Sakuma, S. H., & Khairuddin, M. K. (2003). Radiological impact assessment of radioactive minerals of amang and ilmenite on future landuse using RESRAD computer code. Applied Radiation and Isotopes, 58(3), 413–419. https://doi.org/10.1016/S0969-8043(02)00347-0.

    Article  Google Scholar 

  • Balaram, V. (2019). Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, 10(4), 1285–1303. https://doi.org/10.1016/j.gsf.2018.12.005.

    Article  Google Scholar 

  • Borrego, J., López-González, N., Carro, B., & Lozano-Soria, O. (2004). Origin of the anomalies in light and middle REE in sediments of an estuary affected by phosphogypsum wastes (south-western Spain). Marine Pollution Bulletin, 49(11–12), 1045–1053. https://doi.org/10.1016/j.marpolbul.2004.07.009.

    Article  Google Scholar 

  • Bowen, H. J. M. (1979). Environmental chemistry of the elements (p. 333). Academic Press.

    Google Scholar 

  • Brito, P., Prego, R., Mil-Homens, M., Caçador, I., & Caetano, M. (2018). Sources and distribution of yttrium and rare earth elements in surface sediments from Tagus estuary, Portugal. Science of the Total Environment, 621, 317–325. https://doi.org/10.1016/j.scitotenv.2017.11.245.

    Article  Google Scholar 

  • Cabral Pinto, M., & Ferreira da Silva, E. A. (2019). Heavy Metals of Santiago Island (Cape Verde) alluvial deposits: Baseline value maps and human health risk assessment. International Journal of Environmental Research and Public Health, 16(1), 2. https://doi.org/10.3390/ijerph16010002.

    Article  Google Scholar 

  • Cabral Pinto, M. M. S., Silva, M. M. V. G., & Neiva, A. M. (2008). Geochemistry of U-bearing minerals from the Vale de Abrutiga uranium mine area, Central Portugal. Neues Jahrbuch Mineralogie, 185, 183–198.

    Article  Google Scholar 

  • Cabral Pinto, M. M. S., Silva, M. M. V., Neiva, A. M. R., Guimarães, F., & Silva, P. B. (2009). Uranium minerals from a portuguese variscan peraluminous granite, its alteration, and related uranium-quartz veins. Uranium: Compounds, isotopes and applications, ed. Gerhardt H. Wolfe. New York, Nova Science, Cap. 9, p. 287–318.

  • Cabral Pinto, M. M. S., Silva, M. M., da Silva, E. A. F., Dinis, P. A., & Rocha, F. (2017). Transfer processes of potentially toxic elements (PTE) from rocks to soils and the origin of PTE in soils: A case study on the island of Santiago (Cape Verde). Journal of Geochemical Exploration, 183, 140–151. https://doi.org/10.1016/j.gexplo.2017.06.004.

    Article  Google Scholar 

  • Cabral Pinto, M. M. S., Silva, M. M. V., Neiva, A. M. R., Guimarães, F., & Silva, P. B. (2018). Release, migration, sorption, and (re) precipitation of U during peraluminous granite alteration under oxidizing conditions in Central Portugal. Geosciences, 8(3), 95. https://doi.org/10.3390/geosciences8030095.

    Article  Google Scholar 

  • Chang, C., Li, F., Liu, C., Gao, J., Tong, H., & Chen, M. (2016). Fractionation characteristics of rare earth elements (REEs) linked with secondary Fe, Mn, and Al minerals in soils. Acta Geochimica, 35(4), 329–339. https://doi.org/10.1007/s11631-016-0119-1.

    Article  Google Scholar 

  • Charlesworth, M., & Service, M. (2000). An assessment of metal contamination in Northern Irish coastal sediments. In Biology and Environment: Proceedings of the Royal Irish Academy, 100(1), 1–12.

  • Cheepurupalli, N. R., Anu Radha, B., Reddy, K. S. N., Dhanamjaya Rao, E. N., & Dayal, A. M. (2012). Heavy Mineral distribution studies in different microenvironments of Bhimunipatnam coast, Andhra Pradesh, India. International Journal of Scientific and Research Publications, 2, 1–10.

    Google Scholar 

  • Chen, Z. J., Chen, C. X., Liu, Y. Q., Wu, Y. D., Yang, S. K., & Lu, C. Y. (1992). Study on soil environmental background values in Fujian province. Chinese Journal of Environmental Science, 13, 70–75.

    Google Scholar 

  • Cullers, R. L., Barrett, T., Carlson, R., & Robinson, B. (1987). Rare-earth element and mineralogical changes in Holocene soil and stream sediment: A case study in the Wet Mountains, Colorado, USA. Chemical Geology, 63(3–4), 275–297. https://doi.org/10.1016/0009-2541(87)90167-7.

    Article  Google Scholar 

  • Delgado, J., Nieto, J. M., & Boski, T. (2010). Analysis of the spatial variation of heavy metals in the Guadiana estuary sediments (SW Iberian Peninsula) based on GIS mapping techniques. Estuarine Coastal and Shelf Science, 88, 71–83. https://doi.org/10.1016/j.ecss.2010.03.011.

    Article  Google Scholar 

  • Delgado, J., Pérez-López, R., Galván, L., Nieto, J. M., & Boski, T. (2012). Enrichment of rare earth elements as environmental tracers of contamination by acid mine drainage in salt marshes: A new perspective. Marine Pollution Bulletin, 64(9), 1799–1808. https://doi.org/10.1016/j.marpolbul.2012.06.001.

    Article  Google Scholar 

  • Ding, S., Liang, T., Zhang, C., Yan, J., & Zhang, Z. (2005). Accumulation and fractionation of rare earth elements (REEs) in wheat: Controlled by phosphate precipitation, cell wall absorption and solution complexation. Journal of Experimental Botany, 56(420), 2765–2775. https://doi.org/10.1093/jxb/eri270.

    Article  Google Scholar 

  • Dinis, P. A., Garzanti, E., Hahn, A., Vermeesch, P., & Cabral-Pinto, M. (2020). Weathering indices as climate proxies. A step forward based on Congo and SW African river muds. Earth-Science Reviews, 201, 103039. https://doi.org/10.1016/j.earscirev.2019.103039.

    Article  Google Scholar 

  • Elderfield, H., & Greaves, M. J. (1982). The rare earth elements in seawater. Nature, 296(5854), 214–219.

    Article  Google Scholar 

  • Elderfield, H., Upstill-Goddard, R., & Sholkovitz, E. R. (1990). The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters. Geochimica Et Cosmochimica Acta, 54(4), 971–991. https://doi.org/10.1016/0016-7037(90)90432-K.

    Article  Google Scholar 

  • German, C. R., Holliday, B. P., & Elderfield, H. (1991). Redox cycling of rare earth elements in the suboxic zone of the Black Sea. Geochimica Et Cosmochimica Acta, 55(12), 3553–3558. https://doi.org/10.1016/0016-7037(91)90055-A.

    Article  Google Scholar 

  • Goddu, S. R., Appel, E., Jordanova, D., & Wehland, F. (2004). Magnetic properties of road dust from Visakhapatnam (India)-relationship to industrial pollution and road traffic. Physics and Chemistry of the Earth, Parts A/b/c, 29(13–14), 985–995. https://doi.org/10.1016/j.pce.2004.02.002.

    Article  Google Scholar 

  • Goldberg, E. D., Koide, M., Schmitt, R. A., & Smith, R. H. (1963). Rare-Earth distributions in the marine environment. Journal of Geophysical Research, 68(14), 4209–4217.

    Article  Google Scholar 

  • Gupta, C. K., & Krishnamurthy, N. (2004). Extractive metallurgy of rare earths. CRC Press.

    Book  Google Scholar 

  • Hannigan, R., Dorval, E., & Jones, C. (2010). The rare earth element chemistry of estuarine surface sediments in the Chesapeake Bay. Chemical Geology, 272(1–4), 20–30. https://doi.org/10.1016/j.chemgeo.2010.01.009.

    Article  Google Scholar 

  • Hellman, P. L., Smith, R. E., & Henderson, P. (1979). The mobility of the rare earth elements: Evidence and implications from selected terrains affected by burial metamorphism. Contributions to Mineralogy and Petrology, 71(1), 23–44. https://doi.org/10.1007/BF00371879.

    Article  Google Scholar 

  • Ho, H. H., Swennen, R., Cappuyns, V., Vassilieva, E., & Van Tran, T. (2012). Necessity of normalization to aluminum to assess the contamination by heavy metals and arsenic in sediments near Haiphong Harbor, Vietnam. Journal of Asian Earth Sciences, 56, 229–239. https://doi.org/10.1016/j.jseaes.2012.05.015.

    Article  Google Scholar 

  • Karuna Karudu, T. (2019). Heavy Mineral distribution and provenance studies of coastal sediments of Visakhapatnam Coast-statistical approach. Journal of the Indian Association of Sedimentologists, 36(2), 64–85.

    Google Scholar 

  • Khadijeh, R. E. S., Elias, S. B., Wood, A. K., & Reza, A. M. (2009). Rare earth elements distribution in marine sediments of Malaysia coasts. Journal of Rare Earths, 27(6), 1066–1071. https://doi.org/10.1016/S1002-0721(08)60390-7.

    Article  Google Scholar 

  • Khan, M. A., Youssof, I., & Abu Bakar, N. K. (2016). Assessing anthropogenic levels, speciation, and potential mobility of rare earth elements (REEs) in ex-tin mining area. Environmental Science and Pollution Research, 23, 25039–25055. https://doi.org/10.1007/s11356-016-7641-x.

    Article  Google Scholar 

  • Krishna, K. M., Reddy, K. S. N., Sekhar, C. R., Naidu, K. B., Rao, P. G., & Reddy, G. V. R. (2016). Heavy mineral studies on late quaternary red sediments of Bhimunipatnam, Andhra Pradesh, East coast of India. Journal of the Geological Society of India, 88(5), 637–647. https://doi.org/10.1007/s12594-016-0530-6.

    Article  Google Scholar 

  • Kumar, A., Cabral-Pinto, M., Kumar, M., & Dinis, P. A. (2020). Estimation of Risk to the Eco-Environment and Human Health of Using Heavy Metals in the Uttarakhand Himalaya, India. Applied Sciences, 10(20), 70–78. https://doi.org/10.3390/app10207078.

    Article  Google Scholar 

  • Lawrence, M. G., & Kamber, B. S. (2006). The behaviour of the rare earth elements during estuarine mixing-revisited. Marine Chemistry, 100(1–2), 147–161. https://doi.org/10.1016/j.marchem.2005.11.007.

    Article  Google Scholar 

  • López-González, N., Borrego, J., Ruiz, F., Carro, B., Lozano-Soria, O., & Abad, M. (2006). Geochemical variations in estuarine sediments: Provenance and environmental changes (Southern Spain). Estuarine Coastal and Shelf Science, 67(1–2), 313–320. https://doi.org/10.1016/j.ecss.2005.11.028.

    Article  Google Scholar 

  • Ma, L., Jin, L., & Brantley, S. L. (2011). How mineralogy and slope aspect affect REE release and fractionation during shale weathering in the Susquehanna/Shale Hills Critical Zone Observatory. Chemical Geology, 290(1–2), 31–49. https://doi.org/10.1016/j.chemgeo.2011.08.013.

    Article  Google Scholar 

  • Mahadevan, C., & Rao, N. B. (1950). Black sand concentrates in Vizagpatnam coast. Current Science, 19, 48–49.

    Google Scholar 

  • Mahadevan, C., & Sriramadas, A. (1948). Monazite in the beach sands of Vizagapatam district. Proceedings of the Indian Academy of Sciences-Section A, 27(4), 275–278.

    Article  Google Scholar 

  • Manoj, M. C., Thakur, B., & Prasad, V. (2016). Rare earth element distribution in tropical coastal wetland sediments: A case study from Vembanad estuary, southwest India. Arabian Journal of Geosciences, 9(3), 197.

    Article  Google Scholar 

  • Miyawaki, R., & Nakai, I. (1995). Crystal chemical aspeds of rare earth minerals. Rare Earth Minerals: Chemistry, Origin and Ore Deposits, 7, 21.

    Google Scholar 

  • Mohammad, A., & Dhanamjayarao, E. N. (2021). The impact of seasonal changes on heavy minerals concentration from a part of east coast of India. Malaysian Journal of Geosciences, 5(1), 12–21.

    Google Scholar 

  • Mohammad, A., Murthy, B. P., Dhanamjayarao, E. N., & Prasad, H. (2020). A study on textural characteristics, heavy mineral distribution and grain-microtextures of recent sediment in the coastal area between the Sarada and Gosthani rivers, east coast of India. International Journal of Sediment Research, 35(5), 484–503. https://doi.org/10.1016/j.ijsrc.2020.03.007.

    Article  Google Scholar 

  • Murakami, H., & Ishihara, S. (2008). REE mineralization of weathered crust and clay sediment on granitic rocks in the Sanyo Belt, SW Japan and the Southern Jiangxi Province, China. Resource Geology, 58(4), 373–401. https://doi.org/10.1111/j.1751-3928.2008.00071.x.

    Article  Google Scholar 

  • Naidu, K. B., Reddy, K. S. N., Sekhar, C. R., Rao, P. G., & Krishna, K. M. (2016). REE geochemistry of monazites from coastal sands between Bhimunipatnam and Konada, Andhra Pradesh, East Coast of India. Current Science, 110(8), 1550–1559.

    Google Scholar 

  • Naidu, K. B., Reddy, K. S. N., & Reddy, M. A. (2018). Industrial suitability of recent coastal sands of ilmenite, rutile, garnet and monazites of gosthani and champavathi river confluences, Andhra Pradesh, East Coast of India. Themed Section: Engineering and Technology, 4(1), 167–178.

    Google Scholar 

  • Palaparthi, J., Chakrabarti, R., Banerjee, S., Guin, R., Ghosal, S., Agrahari, S., & Sengupta, D. (2017). Economically viable rare earth element deposits along beach placers of Andhra Pradesh, eastern coast of India. Arabian Journal of Geosciences, 10(9), 201–209. https://doi.org/10.1007/s12517-017-2973-5.

    Article  Google Scholar 

  • Peter, P. O., Rashid, A., Hou, L., Nkinahamira, F., Kiki, C., Sun, Q., & Hu, A. (2020). Elemental contaminants in surface sediments from Jiulong River Estuary, China: Pollution level and ecotoxicological risk assessment. Water, 12(6), 1640–1662. https://doi.org/10.3390/w12061640.

    Article  Google Scholar 

  • Piper, D. Z. (1974). Rare earth elements in the sedimentary cycle: A summary. Chemical Geology, 14(4), 285–304. https://doi.org/10.1016/0009-2541(74)90066-7.

    Article  Google Scholar 

  • Raju, R. D. (2006). Delta region of the East Coast of India: A potential target for exploration of heavy minerals. Journal-Geological Society of India, 67(5), 669–674.

    Google Scholar 

  • Ramakrishnan, M., Nanda, J. K., & Augustine, P. F. (1998). Geological evolution of the Proterozoic Eastern Ghats mobile belt. Geological Survey of India Special Publication, 44, 1–21.

    Google Scholar 

  • Rao, M. J., Ramana, J. V., Raj, A. A. J., Rao, G. R., & Rajesh, P. (2018). Geochemical and ore-mineralogical characterization of beach placer ilmenite from Srikurmam Deposit, Andhra Pradesh, India. The Journal of Indian Geophysical Union, 22(2), 171–177.

    Google Scholar 

  • Ravi, G. S., Rao, G. R., & Yugandhara Rao, A. (2001). Coastal heavy mineral sand deposits of Andhra Pradesh. Special Issue on Beach and Inland Heavy Mineral Sand Deposits of India, 13, 53–85.

    Google Scholar 

  • Reddy, K. S. N., Lakshmi Prasad, T., & Babu Rao, N. (2007). Relationship of heavy mineral redistribution in different microenvironments to seasonal changes of beach processes in an embayed beach of Yarada-Gangavaram, North Coastal Andhra Pradesh. Journal of the Geological Society of India, 70, 963–974.

    Google Scholar 

  • Rezaye, F., & Rao, M. J. (2018). Studies on geochemical and heavy mineral characteristics of sediments of Gosthani River Estuary. Open Journal of Geology, 8(3), 263–277. https://doi.org/10.4236/ojg.2018.83017.

    Article  Google Scholar 

  • Riedel, G. F., Sanders, J. G., & Osman, R. W. (1999). Biogeochemical control on the flux of trace elements from estuarine sediments: Effects of seasonal and short-term hypoxia. Marine Environmental Research, 47(4), 349–372. https://doi.org/10.1016/S0141-1136(98)00125-1.

    Article  Google Scholar 

  • Roy, P. D., & Smykatz-Kloss, W. (2007). REE geochemistry of the recent playa sediments from the Thar Desert, India: An implication to playa sediment provenance. Geochemistry, 67(1), 55–68. https://doi.org/10.1016/j.chemer.2005.01.006.

    Article  Google Scholar 

  • Sastry, A. V. R., Swamy, A. S. R., & Prasads Rao, R. (1981). Distribution of garnet sands along Visakhapatnam-Bhimunipatnam beach. Indian Journal of Marine Sciences, 1, 369–370.

    Google Scholar 

  • Sastry, A. V. R., Swamy, A. S. R., & Vasudev, K. (1987). Heavy minerals of beach sands along Visakhapatnam Bhimunipatnam, east coast of India. Indian Journal of Marine Science, 16, 39–42.

    Google Scholar 

  • Shatrov, V. A., Sirotin, V. I., Voitsekhovsky, G. V., & Belyavtseva, E. E. (2008). Rare earth elements as indicators of the tectonic activity of the basement (with reference to the Voronezh anteclise). Doklady Earth Sciences, 423(2), 1467–1468. https://doi.org/10.1134/S1028334X08090328.

    Article  Google Scholar 

  • Sholkovitz, E. R. (1993). The geochemistry of rare earth elements in the Amazon River estuary. Geochimica Et Cosmochimica Acta, 57(10), 2181–2190. https://doi.org/10.1016/0016-7037(93)90559-F.

    Article  Google Scholar 

  • Sholkovitz, E. R. (1995). The aquatic chemistry of rare earth elements in rivers and estuaries. Aquatic Geochemistry, 1(1), 1–34. https://doi.org/10.1007/BF01025229.

    Article  Google Scholar 

  • Sholkovitz, E. R., & Elderfield, H. (1988). Cycling of dissolved rare earth elements in Chesapeake Bay. Global Biogeochemical Cycles, 2(2), 157–176.

    Article  Google Scholar 

  • Sholkovitz, E., & Szymczak, R. (2000). The estuarine chemistry of rare earth elements: Comparison of the Amazon, Fly, Sepik and the Gulf of Papua systems. Earth and Planetary Science Letters, 179(2), 299–309. https://doi.org/10.1016/S0012-821X(00)00112-6.

    Article  Google Scholar 

  • Singh, Y. (2020). Beach sand deposits. In rare earth element resources: Indian context. Springer.

    Book  Google Scholar 

  • Singh, P., & Rajamani, V. (2001). REE geochemistry of recent clastic sediments from the Kaveri floodplains, southern India: Implication to source area weathering and sedimentary processes. Geochimica Et Cosmochimica Acta, 65(18), 3093–3108.

    Article  Google Scholar 

  • Sundaram, C. V. (1987). Chemistry and metallurgy of rare earth metal extraction and applications. Transactions of the Indian Institute of Metals, 40(6), 457–477.

    Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: Its composition and evolution. Blackwell Scientific Publications.

    Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1995). The geochemical evolution of the continental crust. Reviews of Geophysics, 33(2), 241–265. https://doi.org/10.1029/95RG00262.

    Article  Google Scholar 

  • Thomas, J. B., Bodnar, R. J., Shimizu, N., & Chesner, C. A. (2003). Melt inclusions in zircon. Reviews in Mineralogy and Geochemistry, 53(1), 63–87. https://doi.org/10.2113/0530063.

    Article  Google Scholar 

  • Toyoda, K., Nakamura, Y., & Masuda, A. (1990). Rare earth elements of Pacific pelagic sediments. Geochimica Et Cosmochimica Acta, 54(4), 1093–1103. https://doi.org/10.1016/0016-7037(90)90441-M.

    Article  Google Scholar 

  • Venkatachalapathy, R., Rajeswari, V., Basavaiah, N., & Balasubramanian, T. (2014). Environmental magnetic studies on surface sediments: A proxy for metal and hydrocarbon contamination. International Journal of Environmental Science and Technology, 11(7), 2061–2074. https://doi.org/10.1007/s13762-013-0355-4.

    Article  Google Scholar 

  • Vital, H., Stattegger, K., & Garbe-Schonberg, C. D. (1999). Composition and trace element geochemistry of detrital clay and heavy mineral suites of the lowermost Amazon River: A provenance study. Journal of Sedimentary Research, 69, 563–575. https://doi.org/10.2110/jsr.69.563.

    Article  Google Scholar 

  • Wagiran, H., Lim, S. E., Lee, S. K., & Sudin, M. Y. (2005). Concentration of Uranium and Thorium in the Product and by-Product of Amang and Ilmenite Tailings Process (Kepekatan Uranium dan Torium dalam Hasil dan Hasil Sampingan Proses Tahi Timah Amang dan Ilmenit). Sains Malaysiana, 34(1), 45–50.

    Google Scholar 

  • Wall, F., & Mariano, A. N. (1995). Rare earth minerals in carbonatites: A discussion centred on the Kangankunde Carbonatite, Malawi. Mineralogical Society Series, 7, 193–226.

    Google Scholar 

  • Wells, W. H., & Wells, V. L. (2012). The Lanthanides, Rare Earth Elements. In Patty’s Toxicology, pp 817–840. https://doi.org/10.1002/0471435139.tox043.pub2.

  • Weltje, G. J., & Von Eynatten, H. (2004). Quantitative provenance analysis of sediments: Review and outlook. Sedimentary Geology, 171(1–4), 1–11.

    Article  Google Scholar 

  • Yan, Y., Yu, R. L., Hu, G. R., Wang, S. S., Huang, H. B., Cui, J. Y., & Yan, Y. (2019). Characteristics and provenances of rare earth elements in the atmospheric particles of a coastal city with large-scale optoelectronic industries. Atmospheric Environment, 214, 116836–116844. https://doi.org/10.1016/j.atmosenv.2019.116836.

    Article  Google Scholar 

  • Yusoff, Z. M., Ngwenya, B. T., & Parsons, I. (2013). Mobility and fractionation of REEs during deep weathering of geochemically contrasting granites in a tropical setting, Malaysia. Chemical Geology, 349, 71–86. https://doi.org/10.1016/j.chemgeo.2013.04.016.

    Article  Google Scholar 

  • Zhang, W., Ma, H., Ye, L., Dong, C., Yu, L., & Feng, H. (2012). Magnetic and geochemical evidence of Yellow and Yangtze River influence on tidal flat deposits in northern Jiangsu Plain, China. Marine Geology, 319, 47–56. https://doi.org/10.1016/j.margeo.2012.07.002.

    Article  Google Scholar 

  • Zhenggui, W., Ming, Y., Xun, Z., Fashui, H., Bing, L., Ye, T., & Chunhua, Y. (2001). Rare earth elements in naturally grown fern Dicranopteris linearis in relation to their variation in soils in South-Jiangxi region (Southern China). Environmental Pollution, 114(3), 345–355.

    Article  Google Scholar 

Download references

Acknowledgements

The author wishes to acknowledge the Centre for Studies on Bay of Bengal (CSBOB) and the Department of Geology, Andhra University for providing equipment.

Funding

The work was self-funded by the author.

Author information

Authors and Affiliations

Authors

Contributions

The whole study was done by AM.

Corresponding author

Correspondence to Ali M. Mohammad.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Ethics approval

Not Applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by M. V. Alves Martins

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad, A.M. Rare earth elements geochemistry of recent clastic sediments from different environments from part of the eastern coast of India. J. Sediment. Environ. 6, 431–445 (2021). https://doi.org/10.1007/s43217-021-00071-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-021-00071-6

Keywords

Navigation