Skip to main content

Advertisement

Log in

Novel double switch voltage-lift Cuk converter

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

High voltage conversion with a continuous input and output current is the prime requirement for electric vehicles and renewable energy applications. In this paper, a new topology based on the Cuk converter is proposed to meet the high step-up gain, reduced switch stress, and continuous input current requirements. The topology is derived from the Cuk converter by using two switches, three inductors, a voltage-lift capacitor, and switched-capacitors. When compared to conventional converters, the proposed converter achieves a high step-up gain with reduced switch stress. Since the topology does not consist of a coupled inductor or transformer structure, voltage spikes during the turnoff process are eliminated. In addition, by simply varying the duty ratio of the two switches, a wide output voltage range is possible. The duty cycle and the switching pulses for the two switches are identical. Hence, the operation and control are simple. To analyze the topology, the continuous conduction mode of operation, voltage, and current stress of the devices, as well as an efficiency analysis are discussed. Finally, a 690 W prototype is implemented to experimentally examine and investigate the proposed converter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Larminie, J., Lowry, J.: Electric Vehicle Technology Explained: Second Edition. (2012). https://doi.org/10.1002/9781118361146

  2. Lukic, S.M., Cao, J., Bansal, R.C., Rodriguez, F., Emadi, A.: Energy storage systems for automotive applications. IEEE Trans. Ind. Electron. 55, 2258–2267 (2008). https://doi.org/10.1109/TIE.2008.918390

    Article  Google Scholar 

  3. Hart Danial, W.: Commonly Used Power and Converter Equations. McGraw Hill, New York (2010)

    Google Scholar 

  4. Bellur, D.M., Kazimierczuk, M.K.: DC–DC converters for electric vehicle applications. In: 2007 Electr. Insul. Conf. Electr. Manuf. Expo, EEIC 2007, pp 286–293 (2007). https://doi.org/10.1109/EEIC.2007.4562633

  5. Ellis, M.W., Von Spakovsky, M.R., Nelson, D.J.: Fuel cell systems: efficient, flexible energy conversion for the 21st century. Proc. IEEE. 89, 1808–1817 (2001). https://doi.org/10.1109/5.975914

    Article  Google Scholar 

  6. Richardson, D.B.: Electric vehicles and the electric grid: a review of modeling approaches, impacts, and renewable energy integration. Renew. Sustain. Energy Rev. 19, 247–254 (2013). https://doi.org/10.1016/j.rser.2012.11.042

    Article  Google Scholar 

  7. Luthander, R., Shepero, M., Munkhammar, J., Widén, J.: Photovoltaics and opportunistic electric vehicle charging in the power system—a case study on a Swedish distribution grid. IET Renew. Power Gener. 13, 710–716 (2019). https://doi.org/10.1049/iet-rpg.2018.5082

    Article  Google Scholar 

  8. Amir, A., Amir, A., Che, H.S., Elkhateb, A., Rahim, N.A.: Comparative analysis of high voltage gain DC–DC converter topologies for photovoltaic systems. Renew. Energy. 136, 1147–1163 (2019). https://doi.org/10.1016/j.renene.2018.09.089

    Article  Google Scholar 

  9. Cardoso, V., Brockveld, S.L., Lazzarin, T.B., Waltrich, G.: Double boost-flyback converter. IET Power Electron. 13, 1163–1171 (2020). https://doi.org/10.1049/iet-pel.2019.1073

    Article  Google Scholar 

  10. Park, K.B., Moon, G.W., Youn, M.J.: High step-up boost converter integrated with voltage-doubler. In: 2010 IEEE Energy Convers. Congr. Expo. ECCE 2010—Proc., vol. 25, pp. 810–816 (2010). https://doi.org/10.1109/ECCE.2010.5617916

  11. Maheswari, L., Sivakumaran, N.: An isolated single-switch high step-up DC/DC converter with three-winding transformer for solar photovoltaic applications. Electr. Eng. 102, 1383–1392 (2020). https://doi.org/10.1007/s00202-020-00959-y

    Article  Google Scholar 

  12. Hu, X., Gao, B., Huang, Y., Chen, H.: Novel single switch DC–DC converter for high step-up conversion ratio. J. Power Electron. 18, 662–671 (2018). https://doi.org/10.6113/JPE.2018.18.3.662

    Article  Google Scholar 

  13. Subramanian, V., Manimaran, S.: Design of parallel-operated SEPIC converters using coupled inductor for load-sharing. J. Power Electron. 15, 327–337 (2015). https://doi.org/10.6113/JPE.2015.15.2.327

    Article  Google Scholar 

  14. Premkumar, M., Kumar, C., Anbarasan, A., Sowmya, R.: A novel non-isolated high step-up DC–DC boost converter using single switch for renewable energy systems. Electr. Eng. 102, 811–829 (2020). https://doi.org/10.1007/s00202-019-00904-8

    Article  Google Scholar 

  15. Ding, X., Zhao, D., Liu, Y., Li, K., Hao, Y.: High step-up three-level DC–DC converter with three-winding coupled-inductor. J. Power Electron. 20, 53–64 (2020). https://doi.org/10.1007/s43236-019-00006-5

    Article  Google Scholar 

  16. Yang, L.S.: Novel dual DC–DC flyback converter with leakage-energy recycling. J. Power Electron. 18, 1007–1014 (2018). https://doi.org/10.6113/JPE.2018.18.4.1007

    Article  Google Scholar 

  17. Raja, R., Jagadeesan, A., Princelynjebakiruba, R., Navabalachandru, C.: An efficient high-step-up interleaved with a common active clamp DC–DC converter for electric vehicle. In: 2013 Int. Conf. Energy Effic. Technol. Sustain. ICEETS 2013, vol. 26, pp. 760–764 (2013). https://doi.org/10.1109/ICEETS.2013.6533480

  18. Luo, Q., Zhang, Y., Sun, P., Zhou, L.: An active clamp high step-up boost converter with a coupled inductor. J. Power Electron. 15, 86–95 (2014). https://doi.org/10.6113/JPE.2015.15.1.86

    Article  Google Scholar 

  19. Kokkonda, K., Kulkarni, P.S.: A high gain soft-switching active-clamped coupled-inductor-based converter for grid-tied photovoltaic applications. Electr. Eng. 103, 2783–2797 (2021). https://doi.org/10.1007/s00202-021-01250-4

    Article  Google Scholar 

  20. Tseng, K.C., Chen, J.Z., Lin, J.T., Huang, C.C., Yen, T.H.: High step-up interleaved forward-flyback boost converter with three-winding coupled inductors. IEEE Trans. Power Electron. 30, 4696–4703 (2015). https://doi.org/10.1109/TPEL.2014.2364292

    Article  Google Scholar 

  21. Leão e Silva Aquino, R.N.A., Tofoli, F.L., Praca, P.P., de Souza Oliveira, D., Barreto, L.H.S.C.: Soft switching high-voltage gain dc-dc interleaved boost converter. IET Power Electron. 8, 120–129 (2015). https://doi.org/10.1049/iet-pel.2014.0275

  22. Joseph, P.K., Devaraj, E.: Design of hybrid forward boost converter for renewable energy powered electric vehicle charging applications. IET Power Electron. 12, 2015–2021 (2019). https://doi.org/10.1049/iet-pel.2019.0151

    Article  Google Scholar 

  23. Tofoli, F.L., de Pereira, D.C., de Paula, W.J., de Oliveira Júnior, D.S.: Survey on non-isolated high-voltage step-up DC–DC topologies based on the boost converter. IET Power Electron. 8, 2044–2057 (2015). https://doi.org/10.1049/iet-pel.2014.0605

    Article  Google Scholar 

  24. Axelrod, B., Berkovich, Y., Ioinovici, A.: Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC–DC PWM converters. IEEE Trans Circuits Syst. I Regul. Pap. 55, 687–696 (2008). https://doi.org/10.1109/TCSI.2008.916403

    Article  MathSciNet  Google Scholar 

  25. Yang, L.S., Liang, T.J., Chen, J.F.: Transformerless DC–DC converters with high step-up voltage gain. IEEE Trans. Ind. Electron. 56, 3144–3152 (2009). https://doi.org/10.1109/TIE.2009.2022512

    Article  Google Scholar 

  26. Lakshmi, M., Hemamalini, S.: Nonisolated high gain DC–DC converter for DC microgrids. IEEE Trans. Ind. Electron. 65, 1205–1212 (2017). https://doi.org/10.1109/TIE.2017.2733463

    Article  Google Scholar 

  27. Ye, H., Jin, G., Fei, W., Ghadimi, N.: High step-up interleaved DC/DC converter with high efficiency. Energy Sources Part A Recover. Util. Environ. Eff. (2020). https://doi.org/10.1080/15567036.2020.1716111

    Article  Google Scholar 

  28. Vafa, M., Ershadi, M.H., Khodadadi, H., Baharizadeh, M.: An interleaved high step-up DC–DC converter with low voltage stress. Iran. J. Sci. Technol. Trans. Electr. Eng. (2020). https://doi.org/10.1007/s40998-020-00366-w

    Article  Google Scholar 

  29. Lopez-Santos, O., Mayo-Maldonado, J.C., Rosas-Caro, J.C., Valdez-Resendiz, J.E., Zambrano-Prada, D.A., Ruiz-Martinez, O.F.: Quadratic boost converter with low-output-voltage ripple. IET Power Electron. 13, 1605–1612 (2020). https://doi.org/10.1049/iet-pel.2019.0472

    Article  Google Scholar 

  30. Valdez-Resendiz, J.E., Rosas-Caro, J.C., Mayo-Maldonado, J.C., Llamas-Terres, A.: Quadratic boost converter based on stackable switching stages. IET Power Electron. 11, 1373–1381 (2018). https://doi.org/10.1049/iet-pel.2017.0278

    Article  Google Scholar 

  31. Marimuthu, M., Vijayalakshmi, S., Shenbagalakshmi, R.: A novel non-isolated single switch multilevel cascaded DC–DC boost converter for multilevel inverter application. J. Electr. Eng. Technol. 15, 2157–2166 (2020). https://doi.org/10.1007/s42835-020-00494-7

    Article  Google Scholar 

  32. Lotfi Nejad, M., Poorali, B., Adib, E., Birjandi, A.A.M.: New cascade boost converter with reduced losses. IET Power Electron. 9, 1213–1219 (2016). https://doi.org/10.1049/iet-pel.2015.0240

    Article  Google Scholar 

  33. de Bento, A.A.M.: Hybrid operational high step-up DC–DC converter. J. Control. Autom. Electr. Syst. 31, 350–359 (2020). https://doi.org/10.1007/s40313-019-00548-w

    Article  Google Scholar 

  34. Zhang, N., Zhang, G., See, K.W., Zhang, B.: A single-switch quadratic buck-boost converter with continuous input port current and continuous output port current. IEEE Trans. Power Electron. 33, 4157–4166 (2018). https://doi.org/10.1109/TPEL.2017.2717462

    Article  Google Scholar 

  35. Banaei, M.R., Sani, S.G.: Analysis and implementation of a new SEPIC-based single-switch buck-boost DC–DC converter with continuous input current. IEEE Trans. Power Electron. 33, 10317–10325 (2018). https://doi.org/10.1109/TPEL.2018.2799876

    Article  Google Scholar 

  36. Ansari, S.A., Moghani, J.S.: A novel high voltage gain noncoupled inductor SEPIC converter. IEEE Trans. Ind. Electron. 66, 7099–7108 (2019). https://doi.org/10.1109/TIE.2018.2878127

    Article  Google Scholar 

  37. Salvador, M.A., Lazzarin, T.B., Coelho, R.F.: High step-up DC–DC converter with active switched-inductor and passive switched-capacitor networks. IEEE Trans. Ind. Electron. 65, 5644–5654 (2018). https://doi.org/10.1109/TIE.2017.2782239

    Article  Google Scholar 

  38. Zhu, M., Luo, F.L.: Voltage-lift-type Cûk converters: Topology and analysis. IET Power Electron. 2, 178–191 (2009). https://doi.org/10.1049/iet-pel:20070023

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sivaraj.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaraj, G., Karpagavalli, P. Novel double switch voltage-lift Cuk converter. J. Power Electron. 23, 23–34 (2023). https://doi.org/10.1007/s43236-022-00509-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-022-00509-8

Keywords

Navigation