Skip to main content
Log in

CB-1R and GLP-1R gene expressions and oxidative stress in the liver of diabetic rats treated with sitagliptin

  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Type 2 diabetes is a major health problem affecting millions of people. Controlled eating and regular physical activity are important for the management of type 2 diabetes. Dipeptidyl peptidase-4 enzyme (DPP-4) inhibitor sitagliptin is a potent agent for the treatment of type-2 diabetes. The aim of this study was to examine the effects of sitagliptin on the liver of rats with streptozotocin (STZ)-induced diabetes, in terms of (i) the expression levels of the cannabinoid 1 receptor (CB-1R) and glucagon-like peptide 1 receptor (GLP-1R), (ii) alterations in the number and localization of these peptides, and (iii) changes in histological and oxidative damage.

Methods

Thirty-two neonatal (two-day-old) rats, which were divided into four groups, were treated with saline (control), sitagliptin (control; 1.5 mg/kg/day for 15 days starting from day 5 of the experimental period), STZ (diabetes; 100 mg/kg single dose), STZ + sitagliptin (diabetes + sitagliptin). After 20 days, hepatic tissues were obtained from rats.

Results

The expressions of GLP-1R and CB-1R mRNA increased approximately 1.89- and 2.94-fold, respectively, in the diabetes + sitagliptin group as compared to the diabetic group. Additionally the number of GLP-1R immunopositive cells decreased and CB-1R immunopositive cells increased in comparison to the diabetic group; however, this was not statistically significant. Glutathione levels increased, but malondialdehyde and protein carbonyl levels decreased in the diabetes + sitagliptin group more than the diabetic group.

Conclusion

Our findings indicate that sitagliptin treatment regulates GLP-1R and CB-1R gene expressions, which are associated with appetite regulation in diabetic rat, and may decrease oxidative stress and liver tissue damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verspohl EJ. Novel therapeutics for type 2 diabetes: incretin hormone mimetics (glucagon-like peptide-1 receptor agonists) and dipeptidyl peptidase-4 inhibitors. Pharmacol Ther 2009;124(1):113–38.

    Article  CAS  PubMed  Google Scholar 

  2. Ahrén B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov 2009;8(5):369–85.

    Article  PubMed  CAS  Google Scholar 

  3. Szayna M, Doyle ME, Betkey JA, Holloway HW, Spencer RG, Greig NH, et al. Exendin-4 decelerates food intake, weight gain, and fat deposition in Zucker rats. Endocrinology 2000;141(6):1936–41.

    Article  CAS  PubMed  Google Scholar 

  4. Tang-Christensen M, Larsen PJ, Göke R, Fink-Jensen A, Jessop DS, Møller M, et al. Central administration of GLP-1-(7-36) amide inhibits food and water intake in rats. Am J Physiol 1996;271(4 Pt 2):R848–56.

    CAS  PubMed  Google Scholar 

  5. Turton MD, O’Shea D, Gunn I, Beak SA, Edwards CM, Meeran K, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 1996;379 (6560):69–72.

    Article  CAS  PubMed  Google Scholar 

  6. van Bloemendaal L, Ten Kulve JS, la Fleur SE, Ijzerman RG, Diamant M. Effects of glucagon-like peptide 1 on appetite and body weight: focus on the CNS. J Endocrinol 2014;221(1):T1–T16.

    Article  PubMed  CAS  Google Scholar 

  7. Soria-Gómez E, Bellocchio L, Reguero L, Lepousez G, Martin C, Bendahmane M, et al. The endocannabinoid system controls food intake via olfactory processes. Nat Neurosci 2014;17(3):407–15.

    Article  PubMed  CAS  Google Scholar 

  8. Jamshidi N, Taylor DA. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br J Pharmacol 2001; 134(6): 1151–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schiöth HB. G protein-coupled receptors in regulation of body weight. CNS Neurol Disord Drug Targets 2006;5(3):241–9.

    Article  PubMed  Google Scholar 

  10. Cable JC, Tan GD, Alexander SP, O’Sullivan SE. The effects of obesity, diabetes and metabolic syndrome on the hydrolytic enzymes of the endocannabinoid system in animal and human adipocytes. Lipids Health Dis 2014;13:43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Vilches-Flores A, Delgado-Buenrostro NL, Navarrete-Vázquez G, Villalobos-Molina R. CB1 cannabinoid receptor expression is regulated by glucose and feeding in rat pancreatic islets. Regul Pept 2010;163(1–3):81–7.

    Article  CAS  PubMed  Google Scholar 

  12. Hayakawa K, Mishima K, Nozako M, Hazekawa M, Aoyama Y, Ogata A, et al. High-cholesterol feding aggravates cerebral infarction via decreasing the CB1 receptor. Neurosci Lett 2007;414(2):183–7.

    Article  CAS  PubMed  Google Scholar 

  13. Quintanilla-García C, Zúñiga-Guajardo S. The incretin effect and type 2 diabetes. Rev Med Inst Mex Seguro Soc 2010;48(5):509–20.

    PubMed  Google Scholar 

  14. Tahrani AA, Piya MK, Barnett AH. Saxagliptin: a new DPP-4 inhibitor for the treatment of type 2 diabetes mellitus. Adv Ther 2009;26(3):249–62.

    Article  CAS  PubMed  Google Scholar 

  15. Birnbaum Y, Castillo AC, Qian J, Ling S, Ye H, Perez-Polo JR, et al. Phosphodiesterase III inhibition increases cAMP levels and augments the infarct size limiting effect of a DPP-4 inhibitor in mice with type-2 diabetes mellitus. Cardiovasc Drugs Ther 2012;26(6):445–56.

    Article  CAS  PubMed  Google Scholar 

  16. de Ranitz-Greven WL, Beulens JW, Hoeks LB, Belle-van Meerkerk G, Biesma DH, de Valk HW. Patients with type 2 diabetes mellitus failing on oral agents and starting once daily insulin regimen; a small randomized study investigating effects of adding vildagliptin. BMC Res Notes 2014;7:579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lehrke M, Marx N, Patel S, Seck T, Crowe S, Cheng K, et al. Safety and tolerability of linagliptin in patients with type 2 diabetes: a comprehensive pooled analysis of 22 placebo-controlled studies. Clin Ther 2014;36(8): 1130–46.

    Article  CAS  PubMed  Google Scholar 

  18. Itou M, Kawaguchi T, Taniguchi E, Sata M. Dipeptidyl peptidase-4: a key player in chronic liver disease. World J Gastroenterol 2013;19(15):2298–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Scheen AJ. Safety of dipeptidyl peptidase-4 inhibitors for treating type 2 diabetes. Expert Opin Drug Saf 2015; 14(4):505–24.

    Article  CAS  PubMed  Google Scholar 

  20. Arase Y, Kawamura Y, Seko Y, Kobayashi M, Suzuki F, Suzuki Y, et al. Efficacy and safety in sitagliptin therapy for diabetes complicated by non-alcoholic fatty liver disease. Hepatol Res 2013;43(11):1163–8.

    Article  CAS  PubMed  Google Scholar 

  21. Karabulut S, Coskun ZM, Bolkent S. Immunohistochemical, apoptotic and biochemical changes by dipeptidyl peptidase-4 inhibitor-sitagliptin in type-2 diabetic rats. Pharmacol Rep 2015;67(5):846–53.

    Article  CAS  PubMed  Google Scholar 

  22. Desmet VJ, Knodell RG, Ishak KG, Black WC, Chen TS, Craig R, Kaplowitz N, et al. Formulation and application of a numerical scoring system for assessing histological activity in asymptomatic chronic active hepatitis. J Hepatol 2003;38(4)382–6 [Hepatology. 1981. 1, 431-435].

    Article  PubMed  Google Scholar 

  23. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29(9):e45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem 1951;193(1):265–75.

    CAS  PubMed  Google Scholar 

  25. Beutler E, Duron O, Kelly BM. Improved method for the determination of blood glutathione. J Lab Clin Med 1963;61:882–8.

    CAS  PubMed  Google Scholar 

  26. Ledwozyw A, Michalak J, Stepień A, Kadziołka A. The relationship between plasma triglycerides, cholesterol, total lipids and lipid peroxidation products during human atherosclerosis. Clin Chim Acta 1986;155(3): 275–83.

    Article  CAS  PubMed  Google Scholar 

  27. Reznick AZ, Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 1994;233:357–63.

    Article  CAS  PubMed  Google Scholar 

  28. Aebi H. Catalase in vitro. Methods Enzymol 1984;105:121–6.

    Article  CAS  PubMed  Google Scholar 

  29. Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 1971;44(1):276–87.

    Article  CAS  PubMed  Google Scholar 

  30. Grover JK, Vats V, Yadav S. Effect of feeding aqueous extract of Pterocarpus marsupium on glycogen content of tissues and the key enzymes of carbohydrate metabolism. Mol Cell Biochem 2002;241(1–2):53–9.

    Article  CAS  PubMed  Google Scholar 

  31. Lee SJ, Zhang GF, Sung NJ. Hypolipidemic and hypoglycemic effects of Orostachys japonicus A. Berger extracts in streptozotocin-induced diabetic rats. Nutr Res Pract 2011;5(4):301–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Koyuturk M, Sacan O, Karabulut S, Turk N, Bolkent S, Yanardag R, et al. The role of ghrelin on apoptosis, cell proliferation and oxidant-antioxidant system in the liver of neonatal diabetic rats. Cell Biol Int 2015;39(7):834–41.

    Article  CAS  PubMed  Google Scholar 

  33. Turk N, Dagistanli FK, Sacan O, Yanardag R, Bolkent S. Obestatin and insulin in pancreas of newborn diabetic rats treated with exogenous ghrelin. Acta Histochem 2012;114(4):349–57.

    Article  CAS  PubMed  Google Scholar 

  34. Chandran R, Parimelazhagan T, Shanmugam S, Thankarajan S. Antidiabetic activity of Syzygium calophyllifolium in streptozotocin-nicotinamide induced type-2 diabetic rats. Biomed Pharmacother 2016;82:547–54.

    Article  CAS  PubMed  Google Scholar 

  35. Smits MM, Tonneijck L, Muskiet MH, Kramer MH, Cahen DL, van Raalte DH. Gastrointestinal actions of glucagon-like peptide-1-based therapies: glycaemic control beyond the pancreas. Diabetes Obes Metab 2016; 18(3):224–35.

    Article  CAS  PubMed  Google Scholar 

  36. Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev 2007;87 (4):1409–39.

    Article  CAS  PubMed  Google Scholar 

  37. Thyssen S, Arany E, Hill DJ. Ontogeny of regeneration of b-cells in the neonatal rat after treatment with streptozotocin. Endocrinology 2006;147(5):2346–56.

    Article  CAS  PubMed  Google Scholar 

  38. Bermúdez-Siva FJ, Serrano A, Diaz-Molina FJ, Sánchez Vera I, Juan-Pico P, Nadal A, et al. Activation of cannabinoid cb1 receptors induces glucose intolerance in rats. Eur J Pharmacol 2006;531(1–3):282–4.

    Article  PubMed  CAS  Google Scholar 

  39. Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 1997;74(2): 129–80.

    Article  CAS  PubMed  Google Scholar 

  40. Zhuang S, Kittler J, Grigorenko EV, Kirby MT, Sim LJ, Hampson RE, et al. Effects of long-term exposure to delta9-THC on expression of cannabinoid receptor (CB1) mRNA in different rat brain regions. Brain Res Mol Brain Res 1998;62 (2):141–9.

    Article  CAS  PubMed  Google Scholar 

  41. Duarte JMN, Nogueira C, Mackie K, Oliveira CR, Cunha RA, Köfalvi A. Increase of cannabinoid CB1 receptor density in the hippocampus of streptozotocin-induced diabetic rats. Exp Neurol 2007;204(1):479–84.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang F, Challapalli SC, Smith PJ. Cannabinoid CB(1) receptor activation stimulates neurite outgrowth and inhibits capsaicin-induced Ca(2+) influx in an in vitro model of diabetic neuropathy. Neuropharmacology 2009;57(2):88–96.

    Article  CAS  PubMed  Google Scholar 

  43. Radziszewska E, Bojanowska E. Effects of glucagon-like peptide-1 receptor stimulation and blockade on food consumption and body weight in rats treated with a cannabinoid CB1 receptor agonist WIN 55,212-2. Med Sci Monit Basic Res 2013;19:6–11.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. Endocrinology 2012;153(2):647–58.

    Article  CAS  PubMed  Google Scholar 

  45. González-Mariscal I, Krzysik-Walker SM, Kim W, Rouse M, Egan JM. Blockade of cannabinoid 1 receptor improves GLP-1R mediated insulin secretion in mice. Mol Cell Endocrinol 2016;423:1–10.

    Article  PubMed  CAS  Google Scholar 

  46. Silvestri C, Di Marzo V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab 2013;17(4):475–90.

    Article  CAS  PubMed  Google Scholar 

  47. Kopáni M, Celec P, Danisovic L, Michalka P, Biró C. Oxidative stress and electron spin resonance. Clin Chim Acta 2006;364(1–2):61–6.

    Article  PubMed  CAS  Google Scholar 

  48. Li YG, Ji DF, Lin TB, Zhong S, Hu GY, Chen S. Protective effect of sericin peptide against alcohol-induced gastric injury in mice. Chin Med J (Engl) 2008;121 (20):2083–7.

    Article  CAS  Google Scholar 

  49. Nicotera P, Orrenius S. Role of thiols in protection against biological reactive intermediates. Adv Exp Med Biol 1986;197:41–51.

    Article  CAS  PubMed  Google Scholar 

  50. Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: analytical and biological challenges. Anal Biochem 2016;S0003-2697(16):30357–8.

    Google Scholar 

  51. Ávila Dde L, Araújo GR, Silva M, Miranda PH, Diniz MF, Pedrosa ML, et al. Vildagliptin ameliorates oxidative stress and pancreatic beta cell destruction in type 1 diabetic rats. Arch Med Res 2013;44(3):194–202.

    Article  PubMed  CAS  Google Scholar 

  52. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R. Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 2003;329(1–2):23–38.

    Article  CAS  PubMed  Google Scholar 

  53. Sathiyapriya V, Selvaraj N, Bobby Z, Agrawal A. Perturbation of erythrocyte antioxidant barrier, lipid peroxidation and protein carbonylation in non-diabetic first degree relatives of patients with type 2 diabetes. Diabetes Res Clin Pract 2007;78(2):171–5.

    Article  CAS  PubMed  Google Scholar 

  54. Shinde SN, Dhadke VN, Suryakar AN. Evaluation of oxidative stress in type 2 diabetes mellitus and follow-up along with vitamin E supplementation. Indian J Clin Biochem 2011;26(1):74–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sema Bolkent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coskun, Z.M., Koyuturk, M., Karabulut, S. et al. CB-1R and GLP-1R gene expressions and oxidative stress in the liver of diabetic rats treated with sitagliptin. Pharmacol. Rep 69, 822–829 (2017). https://doi.org/10.1016/j.pharep.2017.03.013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2017.03.013

Keywords

Navigation