Skip to main content
Log in

Metabolic Approaches to the Treatment of Autism Spectrum Disorders

  • Published:
Journal of Autism and Developmental Disorders Aims and scope Submit manuscript

Abstract

Although the exact prevalence of metabolic abnormalities in autism spectrum disorders is unknown, several metabolic defects have been associated with autistic symptoms. These include phenylketonuria, histidinemia, adenylosuccinate lyase deficiency, dihydropyrimidine dehydrogenase deficiency, 5′-nucleotidase superactivity, and phosphoribosylpyrophosphate synthetase deficiency. When the metabolic consequences of an enzyme defect are well defined (e.g., phenylketonuria, 5′-nucleotidase superactivity), treatment with diet, drugs, or nutritional supplements may bring about a dramatic reduction in autistic symptoms. This review evaluates evidence for metabolic etiologies in autism spectrum disorders, as well as for the efficacy of dietary and vitamin treatments. The relationship between gastrointestinal abnormalities and autism spectrum disorders is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Berger, R., Stoker-de Vries, S. A., Waldman, S. K., Duran, M., Beemer, F. A., Debree, P. K., Weits-Binnerts, J. J., Penders, T. J., & van der Woude, J. K. (1984). Dihydropyrimidine dehdrogenase deficiency leading to thymine-uraciluria. An inborn error of pyrimidine metabolism. Clinical Chimica Acta, 141, 227–234.

    Google Scholar 

  • Bolmen, W. M., & Richmond, J. A. (1999). Journal of Autism and Developmental Disorders, 29, 191–194.

    PubMed  Google Scholar 

  • Coleman, N. (1989). Autism: Nondrug biological treatments. In C. Gilberg (Ed.), Diagnosis and treatment of autism (pp. 219–235). New York: Plenum Press.

    Google Scholar 

  • Coleman, M., & Gillberg, C. (1993). Biology of the autistic syndromes (pp. 203–217). London: MacKeith.

    Google Scholar 

  • Coleman, M., Langrebe, M., & Langrebe, A. (1974). Progressive seizures with hyperuricosuria reversed by allopurinol. Archives of Neurology, 31, 238–242.

    PubMed  Google Scholar 

  • Coleman, M., Langrebe, M., & Langrebe, A. (1976). Purine autism. Hyperuricosuria in autistic children: Does this identify a subgroup of autism? In M. Coleman (Ed.), The autistic syndromes (pp. 183–214). New York: Elsevier.

    Google Scholar 

  • D'Eufemia, P., Celli, M., Finocchiaro, R., Pacifico, L., Viazzi, L., Zaccagnini, M., Cardi, E., & Giardini, O. (1996). Abnormal intestinal permeability in children with autism. Acta Pediatrica, 85, 1076–1079.

    Google Scholar 

  • Fernell, E., Watanabe, Y., Adolfsson, I., Tani, Y., Bergstrom, M., Hartvig, P., Lilja, A., von Knorring, A.-L., Gillberg, C., & Langstrom, B. (1997). Possible effects of tetrahydrobiopterin treatment in six children with autism-clinical and positron emission tomography data: A pilot study. Developmental Medicine and Child Neurology, 39, 313–318.

    PubMed  Google Scholar 

  • Goodwin, M. S., Cowan, M. A., & Goodwin, T. C. (1971). Malabsorbtion and cerebral dysfunction: A multivariate and comparative study of autistic children. Journal of Autism and Childhood Schizophrenia, 1, 48–62.

    PubMed  Google Scholar 

  • Hooft, C., Van Nevel, C., & De Schaepdryver, A. F. (1968). Hyperuricosuric encephalopathy without hyperuricemia. Archives of Diseases of Children, 43, 734–737.

    Google Scholar 

  • Horvath, K., Papadimitriou, J. C., Rabsztyn, A., Drachenberg, C., & Tildon, J. T. (1999). Gastrointestinal abnormalities in children with autistic disorder. Journal of Pediatrics, 135, 559–563.

    PubMed  Google Scholar 

  • Institute for Child Behavior Research. (1987). Is folic acid effective? Autism Research Reviews International, 4, 2.

    Google Scholar 

  • Kleijnen, J., & Knipschild, P. (1991). Niacin and vitamin B6 in mental functioning: A review of controlled trials in humans. Biological Psychiatry, 29, 931–941.

    PubMed  Google Scholar 

  • Knivsberg, A. M., Wiig, K., Lind, G., Nogland, M., & Reichelt, K. L. (1990). Dietary intervention in autistic syndromes. Developmental Brain Dysfunction, 3, 315–327.

    Google Scholar 

  • Kredich, N. M., & Harshfield, M. S. (1983). Immunodeficiency diseases caused by adenosine deaminase deficiencyand purine nucleoside phosphorylase deficiency. In J. B. Stanbury, J. B. Wyngaerden, D. S. Frederickson, J. L. Goldstein, & M. S. Brown (Eds.), The metabolic basis of inherited disease (pp. 1157–1183). New York: McGraw-Hill.

    Google Scholar 

  • Lelord, G., Barthe1emy, C., & Martineau, N. (1988). Clinical and biological effects of vitamin B6 plus magnesium in autistic subjects. In J. Laklam & R. Reynolds (Eds.), Vitamin B6 responsive disorders in humans (pp. 329–356). New York: Liss.

    Google Scholar 

  • Lis, A. W., McLaughlin, R. K., Lis, E. W., & Stubbs, E. G. (1976). Profiles of ultraviolet absorbing components of urine from autistic children, as obtained by high-resolution ion-exchange chromatography. Clinical Chemistry, 22, 1528–1532.

    PubMed  Google Scholar 

  • McDougle, C. J., Naylor, S. T., Goodman, W. K., Volkmar, F. R., Cohen, D. J., & Price, L. H. (1993). Acute tryptophan depletion in autistic disorder: A controlled case study. Biological Psychiatry, 33, 547–550.

    PubMed  Google Scholar 

  • Nowell, M. A., Hacknney, D. B., Muraki, A. S., & Coleman, M. (1990). Varied MR appearance of autism: Fifty-three pediatric patients having the full autistic syndrome. Magnetic Resonance Imaging, 8, 811–816.

    PubMed  Google Scholar 

  • Page, T., & Coleman, M. (1998). De novo purine synthesis is increased in the fibroblasts of purine autism patients. In A. Greismacher, P. Chiba, & M. M. Muller (Eds.), Purine and pyrimidine metabolism in men (Vol. 9, pp. 793–796). New York: Plenum Press.

    Google Scholar 

  • Page, T., Yu, A., Fontanesi, J., & Nyhan, W. L. (1997). Developmental disorder associated with increased nucleotidase activity. Proceedings of the National Academy of Sciences (U.S.), 94, 11601–11606.

    Google Scholar 

  • Reichelt, K. L., Knivsberg, A. M., Nodland, M., & Lind, G. (1994). Nature and consequences of hyperpeptiduria and bovine casomorphins found in autistic syndromes. Developmental Brain Dysfunction, 7, 71–85.

    Google Scholar 

  • Rosenberg, L. (1983). Disorders of propionate and methylmalonate metabolism. In J. B. Stanbury, J. B. Wyngaerden, D. S. Frederickson, J. L. Goldstein, & M. S. Brown (Eds.), The metabolic basis of inherited disease (pp. 474–497). New York: McGraw-Hill.

    Google Scholar 

  • Rosenberger-Deblesse, J., & Coleman, M. (1986). Brief report: Preliminary evidence for multiple etiologies in autism. Journal of Autism and Developmental Disorders, 16, 385–392.

    PubMed  Google Scholar 

  • Salerno, C., D'Euphemia, P., Finocchiaro, R., Celli, M., Spalice, A., Ianetti, P., Crifo, C., & Giardini, O. (1999). Effect of D-ribose on purine synthesis and neurological symptoms in a patient with adenylsuccinase deficiency. Biochimica Biophysica Acta, 1453, 135–140.

    Google Scholar 

  • Sandler, A. D., Sutton, K. A., DeW??15??, J., Girardi, M. A., Sheppard, V., & Bodfish, J. W. (1999). Lack of benefit of a single dose of synthetic human secretin in the treatment of autism and pervasive developmental disorder. New England Journal of Medicine, 341, 1801–1806.

    PubMed  Google Scholar 

  • Shaw, W., Kassen, E., & Chavez, E. (1995). Increased urinary excretions of analogs of Krebs cycle metabolites and arabinose in two brothers with autistic features. Clinical Chemistry, 41, 1094–1104.

    PubMed  Google Scholar 

  • Stubbs, G., Litt, M., Lis, E., Jackson, R., Voth, W., Lindberg, A., & Litt, R. (1982). Adenosine desminase activity decreased in autism. Journal of the American Academy of Child Psychiatry, 21, 71–74.

    PubMed  Google Scholar 

  • Van den Berghe, G., Van den Berghe, A., Vincent, M. F., & Jacken, J. (1994). Adenylsuccinate lyase deficiency: An update. In A. Sahota & M. W. Taylor (Eds.), Purine and pyrimidine metabolism in man (Vol. 8, pp. 363–366). New York: Plenum Press.

    Google Scholar 

  • Visconti, P., Piazzi, S., Posar, A., Santi, A., Pipitone, E., & Rossi, P. G. (1994). Amino acids and infantile autism. Developmental Brain Dysfunction, 7, 86–92.

    Google Scholar 

  • Wada, Y., Nishimura, Y., Tanabu, M., Yoshimura, Y., Ilnuma, K., Yoshida, T., & Arakawa, T. (1974). Hypouric??16??ic, mentally retarded infant with a defect in 5-phosphoribosyl-1-pyrophosphate synthetase. Tohoku Journal of Experimental Medicine, 113, 149–157.

    PubMed  Google Scholar 

  • Young, J. G., Brasic, J. R., & Leven, L. (1990). Genetic causes of autism and the pervasive developmental disorders. In S. I. Deutsch, A. Weizman, & R. Weizman (Eds.), Application of basic neuroscience to child psychiatry (pp. 183–216). New York: Plenum Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Page, T. Metabolic Approaches to the Treatment of Autism Spectrum Disorders. J Autism Dev Disord 30, 463–469 (2000). https://doi.org/10.1023/A:1005563926383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005563926383

Navigation