Skip to main content
Log in

Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The ability of Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum to scavenge peroxyl radicals was investigated by kinetic studies in a model system. The thermal initiated oxidation of methyl linoleate was performed at 60°C in heptanol, with or without antioxidants. When they reached 1% of the substrate, seaweed extracts exhibited antioxidant activities by extending the induction period, but they did not suppress the rate of oxygen uptake as did vitamin E.

A synergistic effect occurred when both algal extracts (1.5 g L-1) and vitamin E (0.4 mmol L-1) were present, and the effectiveness of the combined antioxidants during the whole induction period was vitamin E effectiveness. The synergistic effect of L. digitata, however, was subject to seasonal variations: samples collected in summer were effective synergists, whereas samples collected in winter displayed a marked negative synergism.

The phospholipid fractions of F. vesiculosus, F. serratus and A. nodosum, including pigments, accounted for only 6% of the total lipid fraction, and did not exhibit a large synergistic effect. The main phospholipid was not phosphatidyl ethanolamine as usually related, but phosphatidyl inositol. Fucoxanthin had some antioxidant activity per se under our experimental conditions, but did not act as a synergist of vitamin E. The most potent synergists were recognized as chlorophyll a and related compounds by the application of liquid-liquid partition and chromatography for the identification of active components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berge JP, Gouygou JP, Dubacq JP, Durand P (1995) Reassessment of lipidcomposition of the diatom skeletonema costatum. Phytochemistry 39: 1017–1021.

    Article  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    PubMed  CAS  Google Scholar 

  • Bondarev SL (1997) Photophysics of β-carotene and related compounds. J. appl. Spectrosc. 64: 1–5.

    CAS  Google Scholar 

  • Burger K (1984) Dunnsicht chromatographic mid gradienten Elution imVergleich zur HPLC. Fresenius Z. anal. Chem. 318: 228–233.

    Article  CAS  Google Scholar 

  • Burlakova EB, Mazaletskaya LI, Sheludchenko NI, Shishkina LN (1995) Inhibitory effect of the mixtures of phenol antioxidants and phosphatidylcholine. Russian Chem. Bull. 44: 1014–1020.

    Article  Google Scholar 

  • Burton GW, Ingold KU (1981) Autoxidation of biological molecules. 1. The antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J. Am. chem. Soc. 103: 6472–6477.

    Article  CAS  Google Scholar 

  • Burton GW, Ingold KU (1984) β-carotene: an unusual type of lipid antioxidant. Science 224: 569–573.

    PubMed  CAS  Google Scholar 

  • Cahyana AH, Shuto Y, Kinoshita Y (1992) Pyropheophytin a as an antioxidativesubstance from the marine alga arame (Eisenia bicyclis). Biosci. Biotech. Biochem. 56: 1533–1535.

    Article  CAS  Google Scholar 

  • Cahyana AH, Shuto Y, Kinoshita Y (1993a) Antioxidative activity of porphyrinderivatives. Biosci. Biotech. Biochem. 57: 680–681.

    CAS  Google Scholar 

  • Cahyana AH, Shuto Y, Kinoshita Y (1993b) Synergistic antioxidative effects of porphyrin derivatives with α-tocopherol and ascorbic acid. Biosci. Biotech. Biochem. 57: 1753–1754.

    CAS  Google Scholar 

  • El Oualja H, Perrin D, Martin R (1995) Influence of β-carotene on the induced oxidation of ethyl linoleate. New J. Chem. 19: 1187–1198.

    CAS  Google Scholar 

  • Endo Y, Usuki R, Kaneda T (1985a) Antioxidant effects of chlorophyll and pheophytin on the autoxidation of oils in the dark. I. Comparison of the inhibitory effects. J. Am. Oil Chem. Soc. 62: 1375–1378.

    CAS  Google Scholar 

  • Endo Y, Usuki R, Kaneda T (1985b) Antioxidant effects of chlorophyll and pheophytin on the autoxidation of oils in the dark. II. The mechanism of antioxidative action of chlorophyll. J. Am. Oil Chem. Soc. 62: 1387–1390.

    CAS  Google Scholar 

  • Fleurence J, Gubtier G, Mabeau S, Leray C (1994) Fatty acids from 11 marine macroalgae of the french brittany coast. J. applied Phycol. 6: 527–532.

    Article  CAS  Google Scholar 

  • Fujimoto K, Kaneda T (1980) Screening test for antioxygenic compounds from marine algae and fractionation from Eisenia bicyclis and Undaria pinnatifida. Bull. Japan. Soc. Sci. Fish. 46: 1125–1130.

    CAS  Google Scholar 

  • Fujimoto K, Kaneda T (1984) Separation of antioxygenic (antioxidant) compounds from marine algae. Hydrobiologia 116: 111–113.

    Article  Google Scholar 

  • Fujimoto K, Ohmura H, Kaneda T (1985) Screening for antioxygenic compoundsin marine algae and bromophenols as effective principles in a red alga Polysiphonia ulceolate. Bull. Japan. Soc. Sci. Fish. 51: 1139–1143.

    CAS  Google Scholar 

  • Haugan JA, Liaasen-Jensen S (1989) Improved isolation procedure for fucoxanthin. Phytochemistry 28: 2797–2798.

    Article  CAS  Google Scholar 

  • Herbreteau F, Coiffard LJM, Derrien A, De Roeck-Holtzhauer Y (1997) The fatty acid composition of five species of macroalgae. Bot. mar. 40: 25–27.

    CAS  Google Scholar 

  • Hudson BJF, Ghavani M (1984) Phospholipids as antioxidant synergists for tocopherols in the autoxidation of edible oils. Lebensm Wiss. u-Technol. 17: 191–194.

    CAS  Google Scholar 

  • Ito K, Hori K (1989) Seaweed: chemical composition and potential food uses. Food Reviews International 5: 101–144.

    Article  CAS  Google Scholar 

  • Jones AL, Harwood JL (1992) Lipid composition of the brown algae Fucusvesiculosus and Ascophyllum nodosum. Phytochemistry 31: 3397–3403.

    Article  CAS  Google Scholar 

  • Kaneda T, Ando H (1971) Component lipids of purple laver and their antioxygenic activity. Proc. int. Seaweed Symp. 7: 553–557.

    Google Scholar 

  • Kikuchi M, Kawakami Y, Nishikawa N, Hirano A (1995). Antioxidants containing fucoxanthin and prevention of oxidation by fucoxanthin. Jpn. Kokai Tokkyo Koho JP 07 224 278 [95 224 278], 5 pages. From Chem. Abs. 123: 283776b.

    Google Scholar 

  • Koga T, Terao J (1995) Phospholipids increase radical-scavenging activity of vitamin E in a bulk oil model system. J. Agric. Food Chem. 43: 1450–1454.

    Article  CAS  Google Scholar 

  • Koskas JP, Cillard J, Cillard P (1984) Autoxidation of linoleic acid and behavior of its hydroperoxides with and without tocopherols. J. am. Oil Chem. Soc. 61: 1466–1469.

    CAS  Google Scholar 

  • Lepage M (1964) Isolation and characterization of an esterified form of steryl glucoside. J. Lipid Res. 5: 587–592.

    PubMed  Google Scholar 

  • Le Tutour B (1990) Antioxidative activities of algal extracts, synergistic effectwith vitamin E. Phytochemistry 29: 3759–3765.

    Article  CAS  Google Scholar 

  • Le Tutour B, Brunel C, Quemeneur F (1996) Effet de synergie de la chlorophylle a sur les propriétés antioxydantes de la vitamine E. New J. Chem. 20: 707–721.

    CAS  Google Scholar 

  • Mangold HK (1964) Thin layer chromatography of lipids. J. Am. Oil Chem. Soc. 47, 762–773.

    Google Scholar 

  • Matsukawa R, Dubinsky Z, Kishimoto E, Masaki K, Masuda Y, Takeuchi T, Chihara M, Yamamoto Y, Niki E, Karube I (1997) A comparison of screening methods for antioxidant activity in seaweeds. J. appl. Phycol. 9: 29–35.

    Article  CAS  Google Scholar 

  • Metcalfe LD, Schmitz AA (1961) The rapid preparation of fatty acid esters for gaz chromatographic analysis. Analyt. Chem. 33: 363–364.

    Article  CAS  Google Scholar 

  • Nakamura T, Nagayama K, Uchida K, Tanaka R (1996) Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fish. Sci. 62: 923–926.

    CAS  Google Scholar 

  • Nishibori S, Namiki K (1985) Antioxidative activity of seaweed lipids and their utilisation in food. Kaseigaku Zasshi 36: 845–850 (in Japanese).

    CAS  Google Scholar 

  • Nishibori S, Namiki K (1988) Antioxidative substances in the green fractions of the lipids of aonori (Enteromorpha sp.). Kaseigaku Zasshi 39: 1173–1178 (in Japanese).

    CAS  Google Scholar 

  • Rousseau-Richard C, Richard C, Martin R (1988) Etude cinétique de l'influencecomplexe, pro-ou anti-oxydante, de dérivés phénoliques sur l'oxydation induite d'un substrat polyinsaturé. II. Oxydation du linolénate de méthyle pur ou en presence de phénol, 3-t-butyl-4-hydroxyanisole, t-butylhydroquinone, 3,5-di-t-butyl-4-hydroxytoluene ou α-tocophérol. J. Chim. Phys. 85: 175–184.

    CAS  Google Scholar 

  • Terao J (1989) Antioxidant activity of β-carotene-related carotenoids in solution. Lipids 24: 659–661.

    PubMed  CAS  Google Scholar 

  • Tsuchihashi H, Kigoshi M, Iwatsuki M, Niki E (1995) Action of β-carotene as anantioxidant against lipid peroxidation. Arch. Biochem. Biophys. 323: 137–147.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Niki E, Kamiya Y (1982) Oxidation of lipids. I. Quantitative determination of the oxidation of methyl linoleate and methyl linolenate. Bull. Chem. Soc. Jpn. 55: 1548–1550.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Tutour, B., Benslimane, F., Gouleau, M.P. et al. Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. Journal of Applied Phycology 10, 121–129 (1998). https://doi.org/10.1023/A:1008007313731

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008007313731

Navigation