Skip to main content
Log in

UV irradiation Alters the Levels of Flavonoids Involved in the Defence Mechanism of Citrus aurantium Fruits against Penicillium digitatum

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The effect of UV irradiation on the levels of the flavanone, naringin, and the polymethoxyflavone, tangeretin, in the peel of Citrus aurantium fruits is described, as changes in the synthesis and/or accumulation of these compounds after infection with Penicillium digitatum. The growth of P. digitatum on previously irradiated fruit was reduced by up to 45%. Changes in flavonoid levels were detected, associated with inhibition of fungus growth, the naringin content falling by 69% and tangeretin levels increasing by 70%. The possible participation of naringin and tangeretin in the defence mechanism of this Citrus species is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angioni A, Cabras P, D'Hallewin G, Pirisi FM, Reneiro F and Schirras M (1998) Synthesis and inhibitory activity of 7-geranoxycoumarins against Penicillium species in Citrus fruit. Phytochemistry 47: 1521-1525

    Article  Google Scholar 

  • Beggs CJ, Kuhn K, Böcker R and Wellmann E (1987) Phytochrome-induced flavonoids biosynthesis in mustard (Sinapis alba L.) cotyledons: Enzymic control and differential regulation of anthocyanin and quercetin formation. Planta 172: 121-126

    Article  Google Scholar 

  • Benavente-García O, Castillo J and Del Río JA (1993) Changes in neodiosmin levels during the development of C. aurantium leaves and fruits. Postulation of a neodiosmin biosynthetic pathway. J Agric Food Chem 41: 1916-1919

    Google Scholar 

  • Ben-Aziz A (1967) Nobiletin is main fungistat in tangerines resistant to Mal Secco. Science 155: 1026-1027

    Google Scholar 

  • Ben-Yehoshua S, Rodov V, Kim JJ and Carmeli S (1992) Preformed and induced antifungal materials of citrus fruits in relation to the enhancement of decay resistance by heat and ultraviolet treatments. J Agric Food Chem 40: 1217-1221

    Google Scholar 

  • Ben-Yehoshua S, Goldschmidt EE and Bar-Joseph M (1994) Citrus Fruits. Encyclopedia of Agricultural Science, Vol. 1 (pp. 357-378) Academic Press, Inc., New York

    Google Scholar 

  • Ben-Yehoshua S, Rodov V, Fang DQ and Kim JJ (1995) Preformed antifungal compounds of Citrus fruit: Effect of postharvest treatments with heat and growth regulators. J Agric Food Chem 43: 1062-1066

    Google Scholar 

  • Buffar D, Esnault, R and Kondorosi A (1996) Role of plant defence in alfalfa during symbiosis.World J Microbiol Biotechnol 12: 175-188

    Article  Google Scholar 

  • Cabras P, Schirra M, Pirisi FM, Garau VL and Angioni A (1999) Factors affecting imazalil and thiabendazole uptake and persistence in citrus fruits following dip treatments. J Agric Food Chem 47: 3352-3354

    Article  PubMed  Google Scholar 

  • Castillo J, Benavente-García O and Del Río JA (1992) Naringin and neohesperidin levels during development of leaves, flower, buds, and fruits of Citrus aurantium. Plant Physiol 99: 67-73

    Google Scholar 

  • Castillo J, Benavente-García O and Del Río JA (1993) Hesperetin 7-O-glucoside and prunin in Citrus species (C. aurantium and C. paridisi). A study of their quantitative distribution in immature fruits and as immediate precursors of neohesperidin and naringin in Citrus aurantium. J Agric Food Chem 41: 1920-1924

    Google Scholar 

  • Castillo J, Benavente-García O and Del Río JA (1994) Study and optimization of citrus flavanone and flavones elucidation by reverse phase HPLC with several mobile phases: influence of the structural characteristics. J Liquid Chromatography 17: 1497-1523

    Google Scholar 

  • Challice SJ and Willians AH (1970) Comparative biochemical study of phenolase specifity in Maluas, Pyrus and other plants. Phytochemistry 9: 1261-1269

    Google Scholar 

  • Del Río JA, Fuster MD, Sabater F, Porras I, García-Lidón A and Ortuño A (1995) Effect of benzylaminopurine on the flavanones hesperidin, hesperetin 7-O-glucoside, and prunin in tangelo Nova fruits. J Agric Food Chem 43: 2030-2034

    Google Scholar 

  • Del Río JA, Fuster MD, Sabater F, Porras I, García-Lidón A and Ortuño A (1997) Selection of Citrus varieties highly productive for the neohesperidin dihydrochalcone precursor. Food Chem 59: 433-437

    Google Scholar 

  • Del Río JA, Arcas MC, Benavente-García O, Sabater F and Ortuño A (1998a) Changes of polymethoxylated flavones levels during development of Citrus aurantium (cv. Sevillano) fruits. Planta medica 64: 575-576

    Google Scholar 

  • Del Río JA, Arcas MC, Benavente-García O and Ortuño A (1998b) Citrus polymethoxylated flavones can confer resistance against Phytophthora citrophthora,Penicillium digitatum and Geotrichum species. J Agric Food Chem 46: 4423-4428

    Google Scholar 

  • De Swardt GH, Maxie EC and Singleton VL (1967) Some relations between enzyme activities and phenolics components in banana tissue. S Afr Agric Sci 10: 641-650

    Google Scholar 

  • Dixon RA and Paiva NL (1995) Stress-induced phenylpropanoid metabolism. The Plant Cell 7: 1085-1097

    PubMed  Google Scholar 

  • Friar PMK and Reynolds SL (1997) The effect of home processing on postharvest fungicide residues in citrus fruit: residues of imazalil, 2-phenylphenol and thiabendazole in home-made marmalade, prepared from Late Valencia oranges. Food Addit Contam 11: 57-70

    Google Scholar 

  • Gabor M (1986) Anti-inflammatory and anti-allergic properties of flavonoids. In: Cidy V, Middleton E, Harborne JB and Beretz A (eds.) Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological, and Structure-Activity relationships. Vol. 213 (pp. 471-480) Alan R. Liss Inc., New York

    Google Scholar 

  • Galati EM, Monforte MT, Kirjavainen S, Forestieri A, Trovato A and Tripodo MM (1994) Biologycal effects of hesperidin, a citrus flavonoid (Note I): Antinflammatory and analgesic activity. Farmaco 40: 709-712

    PubMed  Google Scholar 

  • García-Puig D, Pérez ML, Fuster MD, Ortuño A, Sabater F, Porras I, García-Lidón A and Del Río JA (1995) Modification by ethylene of the secondary metabolites naringin, narirutin and nootkatone, in grapefruit. Planta Medica 61: 283-285

    Google Scholar 

  • Holmes GJ and Eckert JW (1995) Relative fitness of imazalilresistant and sensitive biotypes of Penicillium digitatum. Plant Dis 79: 1068-1073

    Google Scholar 

  • Huet R (1982) Constituents of Citrus fruits with pharmacodynamic effects: Citroflavonoids. Fruits 37: 267-271

    Google Scholar 

  • Jacobs M and Rubery PM (1988) Naturally occurring auxin transport regulators. Science 241: 346-349

    Google Scholar 

  • Kamiya S, Esaki S and Konishi F (1979) Flavonoids in citrus hybrids. Agric Biol Chem 43: 1529-1536

    Google Scholar 

  • Kanes K, Tisserat B, Berhow M and Vandercook C (1992) Phenolic composition of various tissues of rutaceae species. Phytochemistry 32: 967-974

    Google Scholar 

  • Lois R (1994) Accumulation of UV-absorbing flavonoids induced by UV-B radiation in Arabidopsis thaliana L. I. Mechanisms of UV-resistance in Arabidopsis. Planta 194: 498-503

    Google Scholar 

  • Lois R and Buchanan BB (1994) Severe sensitivity to ultraviolet radiation in an Arabidopsis mutant deficient in flavonoid accumulation. II. Mechanisms of UV-resistance in Arabidopsis. Planta 194: 504-509

    Google Scholar 

  • Machida K and Osawa K (1989) On the flavonoid constituents from the peels of Citrus hassaku Hort. ex Tanaka. Chem Pharm Bull 37: 1092-1094

    Google Scholar 

  • Manach C, Regerat F, Texier O, Agullo G, Demigne C and Remesy C (1996) Bioavailability, metabolism and physiological impact of 4-oxo-flavonoids. Nutr Res 16: 517-544

    Google Scholar 

  • Mizuno M, Iinuma M, Ohara M, Tanaka T and Iwamasa M (1991) Chemotaxonomy on the Genus Citrus based on polymethoxyflavones. Chem Pharm Bull 39: 945-949

    Google Scholar 

  • Mouly P, Gaydou EM, Auffray A (1998) Simultaneous separation of flavanone glycosides and polymethoxylated flavones in citrus juices using liquid chromatography. J Chromatogr A800: 171-179

    Google Scholar 

  • Ooghe WC, Ooghe SJ, Detavernier CM and Huyghebaert A (1994) Characterization of orange juice (Citrus sinensis) by polymethoxylated flavones. J Agric Food Chem 42: 2191-2195

    Google Scholar 

  • Ortuño A, García-Puig D, Fuster MD, Pérez ML, Sabater F, Porras I, García-Lidón A and Del Río JA (1995) Flavanone and nootkatone levels in different varieties of grapefruits and pummelo. J Agric Food Chem 43: 1-5

    Google Scholar 

  • Ortuño A, Reynaldo I, Fuster MD, Botía JM, García-Puig D, Sabater F, García-Lidón A, Porras I and Del Río JA (1997a) Citrus cultivars with high flavonoid contents in the fruits. Sci Hortic 68: 233-236

    Google Scholar 

  • Ortuño A, Botía JM, Fuster MD, Porras I, García-Lidón A and Del Río JA (1997b) Effect of Scoparone (6,7-dimethoxycoumarin) biosynthesis on the resistance on tangelo Nova, Citrus paradisi, and C. aurantium fruits againts Phytophthora citrophthora. J Agric Food Chem 45: 2740-2743

    Google Scholar 

  • Ortuño AM, Arcas MC, Benavente-García O and Del Río JA (1999) Evolution of polymethoxy flavones during development of tangelo Nova fruits. Food Chem 66: 217-220

    Google Scholar 

  • Pradhan JP and Basu PK (1981) Effect of quercetin on germination of seed in Tephrosia vogelii hook, with special interest on IAA oxidase activity. Ind J Experim Biol 19: 707-709

    Google Scholar 

  • Robbins RC (1976) Regulatory action of phenylbenzo-γ-pyrone (PBP) derivates on blood constituents affecting rheology on patients with coronary heart disease. Int J Vit Nutr Res 46: 338–347

    Google Scholar 

  • Shimoi K, Masuda S, Furogori M, Esaki S and Kinae N (1994) Radioprotective affect of antioxidative flavonoids in γ-ray irradiated mice. Carcinogenesis 15: 669–2672

    Google Scholar 

  • Stapleton AE and Walbot V (1994) Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage Plant Physiol 105: 881–889

    Article  PubMed  Google Scholar 

  • Szent-Gyorgyi A (1938) Methoden zur Herstellung von citrin. Physiol Chem 255: 126-131

    Google Scholar 

  • Vierheilig H, Bago B, Albrecht C, Poulin MJ and Piché Y (1998) Flavonoids and Arbuscular-Mycorrhizal fungi. In: Manthey JA and Buslig BS (eds.) Flavonoids in the Living System. Vol. 439 (pp. 9-33) Plenum Press, New York

    Google Scholar 

  • Weidenbörner M, Hindorf H and Weltzien HC (1992) Aneffective treatment of legume seeds with flavonoids and isoflavonoids against storage fungi of the genus Aspergillus. Seed Sci Technol 20: 447-463

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arcas, M., Botía, J., Ortuño, A. et al. UV irradiation Alters the Levels of Flavonoids Involved in the Defence Mechanism of Citrus aurantium Fruits against Penicillium digitatum. European Journal of Plant Pathology 106, 617–622 (2000). https://doi.org/10.1023/A:1008704102446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008704102446

Navigation