Skip to main content
Log in

Allelopathy as a competitive strategy in persistent thickets of Lantana camara L. in three Australian forest communities

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Field experiments were established to assess possible allelopathic suppression by Lantana camara L. of two indigenous tree species. The design allowed comparison of allelopathic effects with density-dependent resource competition effects. Fire and its role in competitive interactions was included as an experimental treatment. Allelopathic responses were measured in L. camara thickets by germinating and growing Alectryon subcinereus (A. Gray) Radlk. in dry rainforest ecotones (Macleay River) or Cryptocarya rigida (Meissner) in warm temperate rainforest and wet sclerophyll forest (Lake Macquarie) at 10, 20 and 30 seedlings m-2, where L. camara was either physically removed (LR), burnt (LB), or cut and left in place (LT). Germination for both species increased significantly by completely removing L. camara (LR) whereas burning (LB) was significant only for C. rigida. Seedling growth for both species was negatively related to increasing density when all L. camara was removed (LR) but was positively related in the other two treatments (LB and LT). C. rigida seedling biomass increased 47.4% (1.75%2.58 g) and 68.6% (1.98%2.95 g) with increasing seedling density for LT and LB respectively and decreased 23.2% (2.93–2.25 g) for LR. A. subcinereus seedling biomass increased 29.7% (1.95–2.53 g) and 34.7% (2.25–3.03 g) with increasing seedling density for LT and LB respectively and decreased 27.9% (3.30–2.38 g) for LR. Phytotoxin dilution effects were inferred in LT and LB rather than density-dependent intraspecific competition, whereas the reverse was true for LR. Seedling biomass for C. rigida resulting from potential phytotoxin dilution at high seedling density was not significantly different from the response of LR at low seedling density but, for A. subcinereus, the phytotoxin dilution response was significantly less than LR at low seedling density. Moderately intense fire (LB) was not significantly different from the LT treatment at both locations, emphasising that moderate to low intensity fires should not be used to control existing invasions of L. camara. Competitive strategies for invasive populations are identified that may modify succession following disturbance, thereby allowing thicket formation and long-term persistence to affect community dynamics. Such strategies need to be recognised in managing natural communities, particularly for biodiversity conservation.

Nomenclature: Harden (1990).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achhireddy, N. R. & Singh, M. 1984. Allelopathic effects of lantana (Lantana camara) on milkweed vine (Morrenia odorata). Weed Sci. 32: 757-761.

    Google Scholar 

  • Adams, M. A., Iser, J., Kelleher, A. D. & Cheal, D. C. 1994. Nitrogen and phosphorus availability and the role of fire in the heathlands at Wilson's Promontory. Austr. J. Bot. 42: 269-281.

    Google Scholar 

  • Bennett, R. J. 1989. Dry rainforest - fire interactions in the Apsley-Macleay gorges: implications formanagement. Master of Natural Resources Thesis, University of New England, Armidale.

  • Bewick, T. A., Shilling, D. G., Dusky, J. A. & Williams, D. 1994. Effects of celery (Apium graveolens) root residue on growth of various crops and weeds. Weed Techn. 8: 625-629.

    Google Scholar 

  • Bhatt, Y. D., Rawat, Y. S. & Singh, S. P. 1994. Changes in ecosystem functioning after replacement of forest by Lantanashrubland in Kumaun Himalaya. J. Veg. Sci. 5: 67-70.

    Google Scholar 

  • Burr, E. J. 1981. NEVA Users Manual: Analysis of Variance for Complete Factorial Experiments. University of New England, Armidale.

  • Chapin, F. S., Ultousek, P. M. & Van Cleve, K. 1986. The nature of nutrient limitation in plant communities. Amer. Nat. 127: 48-58.

    Google Scholar 

  • Connell, J. H. 1983. On the prevalence and relative importance of interspecificcompetition: evidence fromfield experiments.Amer. Nat. 122: 661-696.

    Google Scholar 

  • Dekker, J. H., Meggitt, W. F. & Putnam, A. R. 1983. Experimental methodologies to evaluate allelopathic plant interactions: the Abutilon theophrasti-Glycine maxmodel. J. Chem. Ecol. 9: 945- 981.

    Google Scholar 

  • Diamond, J. M. 1983. Laboratory, field and natural experiments. Nature 304: 586-587.

    Google Scholar 

  • Fensham, R. J., Fairfax, R. J. & Connell, R. J. 1994. The invasion of Lantana camaraL. in Forty Mile Scrub National Park, North Queensland. Austr. J. Ecol. 19: 297-305.

    Google Scholar 

  • Firbank, L. G. & Watkinson, A. R. 1985. On the analysis of competition within two-species mixtures of plants. J. Appl. Ecol. 22: 503-517.

    Google Scholar 

  • Fischer, N.H., Williamson, G. B., Weidenhamer, J.D. & Richardson, D. R. 1994. In search of allelopathy in the Florida scrub. The role of terpenoids. J. Chem. Ecol. 20: 1355-1380.

    Google Scholar 

  • Floyd, A. G. 1989. Rainforest Trees of Mainland South-Eastern Australia. Inkata Press, Melbourne.

    Google Scholar 

  • Fuerst, E. P. & Putnam, A. R. 1983. Separating the competitive and allelopathic components of interference: theoretical principles. J. Chem. Ecol. 9: 937-944.

    Google Scholar 

  • Gallagher, S. 1979. The effect of Lantana camaraon its immediate environment. Unpublished report, New South Wales Institute of Technology, Sydney.

    Google Scholar 

  • Gentle, C. B. & Duggin, J. A. 1997. Lantana camaraL. invasions in dry rainforest-open forest ecotones: the role of disturbances associated with fire and cattle grazing. Austr. J. Ecol. (in press).

  • Goldberg, D. E. & Werner, P. A. 1983. Equivalence of competitors in plant communities: a null hypothesis and a field experimental approach. Amer. J. Bot. 70: 1098-1104.

    Google Scholar 

  • Grime, J. P. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Amer. Nat. 111: 1169-1194.

    Google Scholar 

  • Groves, R. H. 1991. Status of environmental weed control in Australia. Plant Protection Quarterly 6: 95-98.

    Google Scholar 

  • Haddad, C. R. B. & Valio, I. F. M. 1993. Effect of fire on flowering of Lantana montevidensisBriq. J. Plant Phys. 141: 704-707.

    Google Scholar 

  • Harden, G. (ed) 1990. Flora of New South Wales. Volumes 1-4. New South Wales University Press, Kensington.

    Google Scholar 

  • Hardin, G. 1960. The competitive exclusion principle. Science 131: 1292-1297.

    Google Scholar 

  • Hart, N. K., Lamberton, J. A., Sioumis, A. A. & Saures, H. 1976. New triterpenes of Lantana camara. A comparative study of the constituents of several taxa. Austr. J. Chem. 29: 655-671.

    Google Scholar 

  • Hobbs, R. J. 1989. The nature and effects of disturbance relative to invasions. Pp. 389-405. In: Drake, J.A., Mooney, H. A., di Castri, F., Groves, R. H., Kruger, F. J., Rejmanek, M. & Williamson, M. (eds), Biological invasions - a global perspective. Scope 37 Wiley, Chichester.

    Google Scholar 

  • Lamb, R. 1982. Some effects of Lantana camaraon community dynamics of eucalypt woodland. Proceedings of the 52nd ANZAAS Congress, Section 12: 304-305.

    Google Scholar 

  • Langenheim, J. H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 20: 1223-1280.

    Google Scholar 

  • Macdonald, I. A. W., Thebauld, G., Strahm, W. A. & Strasberg, D. 1991. Effects of alien plant invasions on native vegetation remnants on La Reunion (Mascarene Islands, Indian Ocean). Environ. Cons. 18: 51-61.

    Google Scholar 

  • Mallik, A. V. & Roberts, B. A. 1994. Natural regeneration of Pinus resinosaon burned and unburned sites in Newfounland. J. Veg. Sci. 5: 179-186.

    Google Scholar 

  • Mersie, W. & Singh, M. 1987. Allelopathic effect of Lantanaon some agronomic crops and weeds. Plant Soil 98: 25-30.

    Google Scholar 

  • Miller, R. S. 1967. Pattern and process in competition. Adv. Ecol. Res. 4: 1-74.

    Google Scholar 

  • Mount, A. B. 1969. Eucalypt ecology as related to fire. Proc. the Tall Timbers Fire Ecol. Conf. 9: 75-108.

    Google Scholar 

  • Muller, C. H. 1965. The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club 93: 332-351.

    Google Scholar 

  • Nilsson, M. C. 1994. Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditumHagerup. Oecologia 98: 1-7.

    Google Scholar 

  • Pellissier, F. 1994. Effect of phenolic compounds in humus on the natural regeneration of spruce. Phytochemistry 36: 865-867.

    Google Scholar 

  • Prasad, K. & Srivastava, V. C. 1991. Teletoxic effect of weeds on germination and growth of rice (Oryza sativa). Indian J. Agr. Sci. 61: 591-592.

    Google Scholar 

  • Putnam, A. R. & Tang, C-S. 1986. Allelopathy: the state of the science. In: Putnam A. R. & Tang, C-S. (eds). The Science of Allelopathy. John Wiley and Sons, New York.

    Google Scholar 

  • Raison, R. J. 1980. A review of the role of fire in nutrient cycling in Australian native forest, and of methodology for studying the fire-nutrient interaction. Austr. J. Ecology 5: 15-21.

    Google Scholar 

  • Rawat, Y. S., Bhatt, Y. D., Punde, P. & Singh, S. P. 1994. Production and nutrient cycling in Arundinaria falcataand Lantana camara- the two converted ecosystems in central Himalaya. Tropical Ecol. 35: 53-67.

    Google Scholar 

  • Reader, R. J. & Bricker, B. D. 1994. Barriers to the establishment of invading non-forest plants in deciduous forest nature reserves. Envir. Cons. 21: 62-66.

    Google Scholar 

  • Rutherford, M. C. & Powrie, L. W. 1993. Allelochemic control of biomass allocation in interacting shrub species. J. Chem. Ecol. 19: 893-906.

    Google Scholar 

  • Sahid, I. B. & Sagau, J. B. 1993. Allelopathic effect of Lantana (Lantana camara) and Siam weed (Chromolaena odorata) on selected crops. Weed Sci. 41: 303-308.

    Google Scholar 

  • Schoener, T. W. 1983. Field experiments on interspecific competition. Amer. Nat. 122: 240-285.

    Google Scholar 

  • Silander, J. A. & Antonovics, J. 1982. Analysis of interspecific interactions in a coastal plant community - a perturbation approach. Nature 298: 557-560.

    Google Scholar 

  • Swarbrick, J. T., Willson, B. W. & Hannan-Jones, M. A. 1995. The biology of Australian weeds 25. Lantana camaraL. Plant Prot. Quart. 10: 82-95.

    Google Scholar 

  • Thijs, J., Shann, J. R. & Weidenhamer, J. D. 1994. The effect of phytotoxins on competitive outcome in a model system. Ecology 75: 1959-1964.

    Google Scholar 

  • Tilman, D. 1987. On the meaning of competition and the mechanisms of competitive superiority. Funct. Ecol. 1: 304-315.

    Google Scholar 

  • Tilman, D. 1988. Plant strategies and the structure and dynamics of plant communities. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Usher, M. B. 1988. Biological invasions of nature reserves: a search for generalisations. Biol. Cons. 44: 119-135.

    Google Scholar 

  • Van Wilgen, B. W. & Richardson, D. M. 1985. The effects of alien shrub invasions on vegetation structure and fire behaviour in South African fynbos shrublands: a simulation study. J. Appl. Ecol. 22: 455-466.

    Google Scholar 

  • Webb, L. J. 1968. Environmental relationships of the structural types of Australian rainforest vegetation. Ecology 49: 296-311.

    Google Scholar 

  • Webb, L. J. 1978. A general classification of Australian rainforests. Austr. Plants 9: 349-363.

    Google Scholar 

  • Weidenhamer, J. D., Hartnett, D. C. & Romeo, J. T. 1989. Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants. J. Appl. Ecol. 26: 613-624.

    Google Scholar 

  • Willis, R. J. 1985. The historical bases of the concepts of allelopathy. J. History Biol. 18: 71-102.

    Google Scholar 

  • Wilson, J. B. 1988. Shoot competition and root competition. J. Appl. Ecol. 25: 279-296.

    Google Scholar 

  • Wilson, S. D. & Keddy, P. A. 1986. Species competitive ability and position along a natural stress/disturbance gradient. Ecology 67: 1236-1242.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentle, C.B., Duggin*, J.A. Allelopathy as a competitive strategy in persistent thickets of Lantana camara L. in three Australian forest communities. Plant Ecology 132, 85–95 (1997). https://doi.org/10.1023/A:1009707404802

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009707404802

Navigation