Skip to main content
Log in

Powder Metallurgy Wear-Resistant Materials Based on Iron. Part 1. Materials Prepared by Sintering and Infiltration

  • Published:
Powder Metallurgy and Metal Ceramics Aims and scope

Abstract

Available information on the composition and methods of production of iron-based powder metallurgy wear-resistant materials is reviewed. It is shown that most developments in this field are based on the principle of obtaining wear-resistant material by the creation of a pseudoalloy with a clearly defined heterogeneous structure, in which the microhardnesses of the base material and a hard phase are substantially different. In addition to traditional methods, including pressing and sintering porous ingots and (in some cases) infiltration with a lower melting alloy, methods based on hot working sintered porous ingots under pressure have recently found wider application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. M. Fedorchenko, I. N. Frantsevich, I. D. Radomysel'skii, et al., Powder Metallurgy, Materials, Technology, Properties, Range of Application: Handbook [in Russian], Nauk. Dumka, Kiev (1985).

    Google Scholar 

  2. I. D. Radomysel'skii, G. G. Serdyuk, N. I. Shcherban', Structural Powder Metallurgy Materials [in Russian], Tekhnika, Kiev (1985).

    Google Scholar 

  3. A. F. Zhornyak and I. D. Radomysel'skii, Production of Components with Improved Properties from Powders [in Russian], GOSNIITI, Moscow (1964).

    Google Scholar 

  4. I. D. Radomysel'skii, “Metal-ceramic structural components,” Poroshk. Metall., No. 10, 63-75 (1967).

  5. V. G. Gorbach, Yu. N. Moskalenko, S. Meshashti, and S. Budeban, “Features of the diffusional saturation of porous iron with carbon,” Metalloved. Term. Obrab. Met., No. 2, 27-28 (1997).

    Google Scholar 

  6. I. D. Radomysel'skii, “Structure and properties of structural sintered materials,” Poroshk. Metall., No. 4, 36-45 (1974).

    Google Scholar 

  7. R. Z. Vlasyuk, Investigation of Structure Formation in the Sintering of Metal-Glass Materials [in Russian], Abstract. Dis. Kand. Tech. Nauk, Kiev (1972).

    Google Scholar 

  8. I. D. Radomysel'skii and N. I. Shcherban', Powder Metallurgy Structural Materials [in Russian], O-vo “Znanie” USSR, Kiev (1983).

    Google Scholar 

  9. I. D. Radomysel'skii, I. D. Martyukhin, V. M. Glazkov, and Yu. D. Novomeiskii, “Investigation of the effect of porosity on the abrasive wear of iron-manganese materials,” in: Sintered Structural Materials [in Russian], Kiev (1976), pp. 104-107.

  10. Yu. S. Borisov, V. E. Oliker, E. A. Astakhov, et al., “Structure and properties of gas-thermal coatings of Fe —B —C and Fe —Ti —B —C alloys,” Poroshk. Metall., No. 4, 50-56 (1987).

    Google Scholar 

  11. M. D. Egorov, Yu. L. Sapozhnikov, R. M. Katsel', and Yu. V. Shakhnazarov, “Investigations of the structure and properties of boron-containing alloys,” in: Composite Coatings; Tez. 3 Int. Konf., Zhitomir (1985), pp. 36-37.

  12. I. M. Spiridonova, E. V. Sukhovaya, V. F. Butenko, et al., “Structure and properties on boron-containing iron granules for welding,” Poroshk. Metall., No. 2, 45-49 (1993).

    Google Scholar 

  13. V. F. Tkachenko and Yu. I. Kogan, “Structure and mechanical properties of sintered Fe —B4C materials,” Poroshk. Metall., No. 5. 69-74 (1978).

  14. V. F. Tkachenko, Yu. I. Kogan, and V. A. Kovalchuk, “Structural sintered materials from iron —boron carbide powder mixtures,” in: Structural Materials [in Russian], Kiev (1978).

  15. A. K. Mashkov and V. V. Chernienko, “Production of iron boride ingot molds by the infiltration method,” in: Improving the Technology and Equipment of the Foundry Industry [in Russian], Tr. Omsk. Politekhn. In-ta, Omsk (1975), pp. 101-105.

    Google Scholar 

  16. L. L. Zatynaiko, G. P. Negoda, and V. V. Chernienko, “Use of heat-resistant infiltrating alloys to strengthen sintered iron,” in: Future Developments in Combined Internal Combustion Engines and New Engines Based on New Fuels [in Russian], Tez. Dokl. Vcesoyusn. Konf., MVTU, Moscow (1987), p. 25.

    Google Scholar 

  17. L. I. Tuchinskii, Composite Materials Produced by the Infiltration Method [in Russian], Metallurgiya, Moscow (1986).

    Google Scholar 

  18. A. K. Mashkov, V. I. Gurdin, V. V. Chernienko, and E. P. Polyakov, “Sintered materials based on iron for the production of shape-forming components,” in: Structural Materials [in Russian], Inst. Probl. Materials Sci., Acad. Sci. Ukrainian SSR, Kiev (1977), pp. 24-29.

    Google Scholar 

  19. V. V. Chernienko, M. I. Chapa, A. K. Sekrier, and Yu. G. Dorofeev, “Densification of infiltrated materials by dynamic hot pressing,” in: Increasing the Efficiency of the Die Forging Industry [in Russian], Tez. Dokl. Respub. Konf., Kishenev (1977), pp. 85-89.

    Google Scholar 

  20. V. N. Eremenko, Yu. V. Naidich, and I. A. Lavrinenko, Sintering in the Presence of a Metallic Liquid Phase [in Russian], Nauk. Dumka, Kiev (1968).

    Google Scholar 

  21. V. I. Tret'yakov, Principles of the Metals Science and Production Methods for Sintered Hard Alloys [in Russian], Metallurgiya, Moscow (1976).

    Google Scholar 

  22. T. Kimura and A. Maima, “Method for producing high-density iron-based sintered alloys,” Pat. 3859085 USA, Publ. 07.06.72.

  23. I. Masayuki and A. Hidstosi, “Iron-based powder metallurgy material with high density,” Application 59-16951 Japan, Publ. 01.28.84.

  24. I. Masayuki and H. Kadzyuki, “Iron-based powder metallurgy material with high wear resistance,” Application 59-16952 Japan, Publ. 01.28.84.

  25. I. D. Radomysel'skii and V. N. Klimenko, “Hard alloys of chromium carbide and cast iron powders,” Inform. L., Kiev (1961), No. 12.

  26. V. I. Klimenko, V. A. Maslyuk, and Yu. V. Sambros, “Sintering, structure formation, and properties of powder metallurgy materials of the chromium carbide —iron system,” Poroshk. Metall., No. 8, 39-44 (1986).

    Google Scholar 

  27. M. M. L'vovskii, “Investigation of the alloying of powder metallurgy structural materials with carbon-containing ferrochromium,” in: Sintered Structural Materials [in Russian], Inst. Probl. Materials Sci., Akad. Sci. Ukrainian SSR, (1974), pp. 115-121.

    Google Scholar 

  28. P. S. Kislyi, S. N. L'vov, V. F. Nemchenko, and G. V. Samsonov, “Physical properties of the chromium boride phases,” Poroshk. Metall., No. 6, 50-53 (1962).

    Google Scholar 

  29. L. F. Barshchevskaya, V. A. Maslyuk, V. N. Klimenko, and A. A. Mamonova, “Sintering of materials based on chromium boride,” Poroshk. Metall., No. 9, 34-37 (1987).

    Google Scholar 

  30. O. S. Yurchenko, “Investigation of the stability of iron and nickel heated in contact with refractory compounds,” Poroshk. Metall., No. 1, 45-49 (1971).

    Google Scholar 

  31. Yu. G. Guryevich, V. K. Narva, and N. R. Frage, Carbide Steels [in Russian], Metallurgiya, Moscow (1988).

    Google Scholar 

  32. Ya. Kyubarsepp, Hard Alloys with a Steel Binder, Valgus-TTU, Tallin (1991).

    Google Scholar 

  33. O. V. Yablokova, S. N. Kul'kov, and V. E. Panin, “Formation of interphase boundaries during the sintering of titanium carbide with Hadfield steel,” Poroshk. Metall., No. 7, 37-39 (1985).

    Google Scholar 

  34. M. V. Deshpande et al., “Development of guide roller material for steel wire-rod mill,” Int. J. Refractory Metals Hard Mater., 51,No. 1-3, 151-155 (1997).

    Google Scholar 

  35. J. D. Bolton and A. J. Grant, “Structure development and sintering kinetics of ceramic reinforced high speed steel,” Powder Metallurgy, 40,No. 2, 143-151 (1997).

    Google Scholar 

  36. S. S. Kiparisov, V. K. Narva, L. I. Dalyaeva, et al., “Formation of the structure of titanium carbide —steel alloys during sintering. Report II,” Poroshk. Metall., No. 10, 72-76 (1976).

    Google Scholar 

  37. M. Oliveira and D. Bolton, “Effect of ceramic particles on the mechanical properties of M3/2 high speed steel,” Int. J. Powder Metallurgy, 32,No. 1, 37-49 (1996).

    Google Scholar 

  38. W. C. Zapata, C. E. Da Costa, and J. M. Torralba, “Wear qnd thermal behavior of M3/2 high spreed steel reinforced with NbC composites,” J. Mater. Sci., 33,No. 12, 3219-3225 (1998).

    Google Scholar 

  39. J. M. Martins, M. Oliveira, and H. Carvalhinhos, “Wear resistant high speed steel matrix composites,” in: Advances in Powder Metallurgy and Particulate Materials, Metal Powder Industries Federation, NY (1992), Vol. 6, pp. 213-218.

    Google Scholar 

  40. F. Ning Xiang and X. Run Ze, “Role of pores in iron based PM materials,” PM Technology, 14, No.3, 193-197 (1996).

    Google Scholar 

  41. F. R. Castro et al., “Consolidation of tungsten carbide cemented with iron-manganese binder,” Metal Powder Report, 52,No. 6, 40 (1997).

    Google Scholar 

  42. M. V. Deshpande et al., “Toughness cermeted carbide material with iron-rich binder for steel turning,” Int. J. Refractory Metals Hard Mater., 15,Nos. 1-3, 157-162 (1997).

    Google Scholar 

  43. Yu. M. Skrynchenko, “On some principles for optimization of the compositions and use of powder metallurgy highspeed steels,” in: Powder Metallurgy High-Speed Steels [in Russian], Inst. Probl. Materials Sci., Akad. Sci. Ukrainian SSR, Kiev (1990), pp. 5-16.

    Google Scholar 

  44. A. P. Gulyaev, L. P. Sergienko, and E. P. Tolkacheva, “Structure and properties of powder metallurgy high-speed steel ROM2F3-PM,” Metallov. Term. Obr. Met., No. 5, 37-43 (1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baglyuk, G.A., Posnyak, L.A. Powder Metallurgy Wear-Resistant Materials Based on Iron. Part 1. Materials Prepared by Sintering and Infiltration. Powder Metallurgy and Metal Ceramics 40, 34–39 (2001). https://doi.org/10.1023/A:1011399504008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011399504008

Navigation