Skip to main content
Log in

Zinc homeostasis and functions of zinc in the brain

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

The brain barrier system, i.e., the blood-brain and blood-cerebrospinal fluid barriers, is important for zinc homeostasis in the brain. Zinc is supplied to the brain via both barriers. A large portion of zinc serves as zinc metalloproteins in neurons and glial cells. Approximately 10% of the total zinc in the brain, probably ionic zinc, exists in the synaptic vesicles, and may serve as an endogenous neuromodulator in synaptic neurotransmission. The turnover of zinc in the brain is much slower than in peripheral tissues such as the liver. However, dietary zinc deprivation affects zinc homeostasis in the brain. Vesicular zinc-enriched regions, e.g., the hippocampus, are responsive to dietary zinc deprivation, which causes brain dysfunctions such as learning impairment and olfactory dysfunction. Olfactory recognition is reversibly disturbed by the chelation of zinc released from amygdalar neuron terminals. On the other hand, the susceptibility to epileptic seizures, which may decrease vesicular zinc, is also enhanced by zinc deficiency. Therefore, zinc homeostasis in the brain is closely related to neuronal activity. Even in adult animals and probably adult humans, adequate zinc supply is important for brain functions and prevention of neurological diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Aiken SP, Horn NR, Saunders NR. 1992 Effect of histidine on tissue zinc distribution in rats. BioMetals 5, 235-243.

    Google Scholar 

  • Amoureux MC, Van Gool D, Herrero MT, Dom R, Colpaert FC, Pauwels PJ. 1997 Regulation of metallothionein-III (GIF) mRNA in the brain of patients with Alzheimer disease is not impaired. Mol Chem Neuropathol 32, 101-121.

    Google Scholar 

  • Assaf SY, Chung S-H. 1984 Release of endogeneous Zn2+ from brain tissue during activity. Nature 308, 734-735.

    Google Scholar 

  • Buxani-Rice S, Ueda F, Bradbury MWB. 1994 Transport of zinc-65 at the blood-brain barrier during short cerebrovascular perfusion in the rat: its enhancement by histidine. J Neurochem 62, 665-672.

    Google Scholar 

  • Choi DW, Koh JY. 1998 Zinc and brain injury. Annu Rev Neurosci 21, 347-375.

    Google Scholar 

  • Choi DW, Yokoyama M, Koh JY. 1988 Zinc neurotoxicity in cortical cell culture. Neuroscience 24, 67-79.

    Google Scholar 

  • Cole TB, Robbins CA, Wenzel HJ, Schwartzkroin PA, Palmiter RD. 2000 Seizures and neuronal damage in mice lacking vesicular zinc. Epilepsy Res 39, 153-169.

    Google Scholar 

  • Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD. 1999 Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT-3 gene. Proc Natl Acad Sci USA 96, 1716-1721.

    Google Scholar 

  • Coleman JE. 1992 Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61, 897-946.

    Google Scholar 

  • Colvin RA, Davis N, Nipper RW, Carter PA. 2000 Zinc transport in the brain: routes of zinc influx and efflux in neurons. J Nutr 130, 1484S-1487S.

    Google Scholar 

  • Christensen MK, Frederickson CJ. 1998 Zinc-containing afferent projections to the rat corticomedial amygdaloid complex: a retrograde tracing study. J Comp Neurol 400, 375-390.

    Google Scholar 

  • Crawford IL, Connor JD. 1973 Localization and release of glutamic acid in relation to the hippocampal mossy fiber pathway. Nature 244, 422-423.

    Google Scholar 

  • Cuajungco MP, Lees GJ. 1997a Zinc metabolism in the brain: Relevance to human neurodegenerative disorders. Neurobiol Dis 4, 137-169.

    Google Scholar 

  • Cuajungco MP, Lees GJ. 1997b Zinc and Alzheimer's disease: is there a direct link? Brain Res Rev 23, 219-236.

    Google Scholar 

  • Dreosti IE. 1983 Zinc and the central nervous system. In: Dreosti IE, Smith RM, eds. Neurobiology of the Trace Elements. Vol. 1, Clifton: Humana: 135-162.

    Google Scholar 

  • Dreosti IE, Manuel SJ, Buckley RA, Fraser FJ, Record IR. 1981 The effect of late prenatal and/or early postnatal zinc deficiency on the development and some biochemical aspects of the cerebellum and hippocampus in rats. Life Sci 28, 2133-2141.

    Google Scholar 

  • Ebadi M. 1986 Biochemical characterization of a metallothioneinlike protein in rat brain. Biol Trace Elem Res 11, 101-116.

    Google Scholar 

  • Ebadi M, Iversen PL, Hao R, Cerutis DR, Rojas P, Happe HK, Murrin LC, Pfeiffer RF. 1995 Expression and regulation of brain metallothionein. Neurochem Int 27, 1-22.

    Google Scholar 

  • Erickson JC, Hollopeter G, Thomas SA, Froelick GJ, Palmiter RD. 1997 Disruption of the metallothionein-III gene in mice: Analysis of brain zinc, behavior, and neuron vulnerability to metals, aging, and seizures. J Neurosci 17, 1271-1281.

    Google Scholar 

  • Erickson JC, Sewell AK, Jensen LT, Winge DR, Ralmiter RD. 1994 Enhanced neurotrophic activity in Alzheimer's disease cortex is not associated with down-regulation of metallothionein-III (GIF). Brain Res 649, 297-304.

    Google Scholar 

  • Favier AE. 1992 Hormonal effects of zinc on growth in children. Biol Trace Elem Res 32, 383-398.

    Google Scholar 

  • Franklin PA, Pullen RGL, Hall GH. 1992 Blood-brain exchange routes and distribution of 65Zn in rat brain. Neurochem Res 17, 767-771.

    Google Scholar 

  • Frederickson CJ. 1989 Neurobiology of zinc and zinc-containing neurons. Int Rev Neurobiol 31, 145-238.

    Google Scholar 

  • Frederickson CJ, Hernandez MD, McGinty JF. 1989 Translocation of zinc may contribute to seizure-induced death of neurons. Brain Res 480, 317-321.

    Google Scholar 

  • Frederickson CJ, Danscher G. 1990 Zinc-containing neurons in hippocampus and related CNS structures. Prog Brain Res 83, 71-84.

    Google Scholar 

  • Frederickson RE, Frederickson CJ, Danscher G. 1990 In situ binding of bouton zinc reversibly disrupts performance on a spatial memory task. Behav Brain Res 38, 25-33.

    Google Scholar 

  • Frederickson CJ, Hernandez MD, Goik SA, Morton JD, McGinty JF. 1988 Loss of zinc staining from hippocampal mossy fibers during kainic acid induced seizures: a histofluorescence study. Brain Res 446, 383-386.

    Google Scholar 

  • Frederickson CJ, Klitenick MA, Manton WI, Kirkpatrick JB. 1983 Cytoarchitectonic distribution of zinc in the hippocampus of man and rat. Brain Res 273, 335-339.

    Google Scholar 

  • Frederickson CJ, Moncrieff DW. 1994 Zinc-containing neurons. Biol Signals 3, 127-139.

    Google Scholar 

  • Frederickson CJ, Suh SW, Silva D, Thompson RB. 2000 Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130, 1471S-1483S.

    Google Scholar 

  • Fukahori M, Itoh M. 1990 Effects of dietary zinc status on seizure susceptibility and hippocampal zinc content in the El (epilepsy) mouse. Brain Res 529, 16-22.

    Google Scholar 

  • Fukahori M, Itoh M, Oomagari K, Kawasaki H. 1988 Zinc content in discrete hippocampal and amygdaloid areas of the epilepsy (El) mouse and normal mice. Brain Res 455, 381-384.

    Google Scholar 

  • Gaither LA, Eide DJ. 2000 Functional expression of the human hZIP2 zinc transporter. J Biol Chem 275, 5560-5564.

    Google Scholar 

  • Giroux EL, Henkin RI. 1972 Competition for zinc among serum albumin and amino acids. Biochim Biophys Acta 273, 64-72.

    Google Scholar 

  • Golub MS, Keen CL, Gershwin ME, Vijayan VK. 1986 Growth, development and brain zinc levels in mice marginally or severely deprived of zinc during postembryonic brain development. Nutr Behav 3, 169-180.

    Google Scholar 

  • Golub MS, Keen CL, Gershwin ME, Hendrickx AG. 1995 Developmental zinc deficiency and behavior. J Nutr 125, 2263-2271.

    Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D. 1998 Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95, 7220-7224.

    Google Scholar 

  • Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA. 1997 Cloning and characterization of a mammalian protein-coupled metal-ion transporter. Nature 388, 482-488.

    Google Scholar 

  • Hallman PS, Perrin DD, Watt AE. 1971 The computed distribution of copper (II) and zinc (II) ions among seventeen amino acids in human blood plasma. Biochem J 121, 549-555.

    Google Scholar 

  • Harris WR, Keen CL. 1989 Calculations of the distribution of zinc in a computer model of human serum. J Nutr 119, 1677-1682.

    Google Scholar 

  • Harrison NL, Gibbons SJ. 1994 Zn2+: an endogenous modulator of ligand-and voltage-gated ion channels. Neuropharmacology 33, 935-952.

    Google Scholar 

  • Haug F-MS. 1973 Heavy metals in the brain. A light microscope study of the rat with Timms’ sulphide silver method. Methodological considerations and cytological and regional staining patterns. Adv Anat Embryol Cell Biol 47, 1-71.

    Google Scholar 

  • Henkin RI. 1979 Zinc. Baltimore: Univ. Park Press.

    Google Scholar 

  • Henkin RI, Patten BM, Re PK, Bronzert DA. 1975 A syndrome of acute zinc loss. Arch Neurol 32, 745-751.

    Google Scholar 

  • Hershey CO, Hershey LA, Varnes A, Vibhakar SD, Lavin P, Strain WH. 1983 Cerebrospinal fluid trace element content in dementia: clinical, radiologic, and pathologic correlations. Neurology 33, 1350-1353.

    Google Scholar 

  • Hesse GW. 1979 Chronic zinc deficiency alters neuronal function of hippocampal mossy fibers. Science 205, 1005-1007.

    Google Scholar 

  • Hidalgo J, Carrasco J. 1998 Regulation of the synthesis of brain metallothionein. J Neurotoxicol 19, 661-666.

    Google Scholar 

  • Howell GA, Frederickson CJ. 1989 A retrograde transport method for mapping zinc-containing fiber systems in the brain. Brain Res 515, 277-286.

    Google Scholar 

  • Howell GA, Welch MG, Frederickson CJ. 1984 Stimulationinduced uptake and release of zinc in hippocampal slices. Nature 308, 736-738.

    Google Scholar 

  • Huang EP. 1997 Metal ions and synaptic transmission: think zinc. Proc Natl Acad Sci USA 94, 13386-13387.

    Google Scholar 

  • Jo SM, Won MH, Cole TB, Jensen MS, Palmiter RD, Danscher G. 2000 Zinc-enriched (ZEN) terminals in mouse olfactory bulb. Brain Res 865, 227-236.

    Google Scholar 

  • Kasarskis EJ. 1984 Zinc metabolism in normal and zinc-deficient rat brain. Exp Neurol 85, 114-127.

    Google Scholar 

  • Keller KA, Chu Y, Grider A, Coffield JA. 2000 Supplementation with L-histidine during dietary zinc repletion improves shortterm memory in zinc-restricted young adult male rats. J Nutr 130, 1633-1640.

    Google Scholar 

  • Klaassen CD. 1999 Metallothionein IV. Basel: Birkhauser.

    Google Scholar 

  • Koh JY, Choi DW. 1994 Zinc toxicity on cultured cortical neurons: Involvement of N-methyl-D-aspartate receptors. Neuroscience 60, 1049-1057.

    Google Scholar 

  • Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW. 1996 The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272, 1013-1016.

    Google Scholar 

  • Lee JY, Cole TB, Palmiter RD, Koh JY. 2000 Accumulation of zinc in degenerating hippocampal neurons of ZnT3-null mice after seizures: evidence against synaptic vesicle origin. J Neurosci 20, RC79.

    Google Scholar 

  • Lu YM, Taverna FA, Tu R, Ackerley CA, Wang YT, Roder J. 2000 Endogenous Zn(2+) is required for the induction of longterm potentiation at rat hippocampal mossy fiber-CA3 synapses. Synapse 38, 187-197.

    Google Scholar 

  • Mackay-Sim A, Dreosti IE. 1989 Olfactory function in zincdeficient adult mice. Exp Brain Res 76, 207-212.

    Google Scholar 

  • Magneson GR, Puvathingal JM, Ray Jr, WJ. 1987 The concentrations of free Mg2+ and free Zn2+ in equine blood plasma. J Biol Chem 262, 11140-11148.

    Google Scholar 

  • Maret W. 1994 Oxidative metal release from metallothionein via zinc-thiol/disulfide interchange. Proc Natl Acad Sci USA 91, 237-241.

    Google Scholar 

  • Maret W. 2000 The function of zinc metallothionein: a link between cellular zinc and redox state. J Nutr 130, 1455S-1458S.

    Google Scholar 

  • Maret W, Vallee BL. 1998 Thiolate ligands in metallothionein confer redox activity on zinc clusters. Proc Natl Acad Sci USA 95, 3478-3482.

    Google Scholar 

  • Markesbery WR, Ehmann WD, Alauddin M, Hossain TIM. 1984 Brain trace element concentrations in aging. Neurobiol Aging 5, 19-28.

    Google Scholar 

  • Masters BA, Quaife CJ, Erickson JC, Kelly EJ, Froelick GJ, Zambrowicz BP, Brinster RL, Palmiter RD. 1994 Metallothionein III is expressed in neurons that sequester zinc in synaptic vesicles. J Neurosci 14, 5844-5857.

    Google Scholar 

  • McMahon RJ, Cousins RJ. 1998 Mammalian zinc transporters. J Nutr 128, 667-670.

    Google Scholar 

  • McMahon RJ, Cousins RJ. 1998 Regulation of the zinc transporter ZnT-1 by dietary zinc. Proc Natl Acad Sci USA 95, 4841-4846.

    Google Scholar 

  • O'Dell BL, Reeves PG, Morgan RF. 1976 Interrelationships of tissue copper and zinc concentrations in rats nutritionally deficient in one or the other of these elements. In: Hemphill, DD, ed. Trace substances in environmental health. ColumbiaMO: University of Missouri: 411-521.

    Google Scholar 

  • Palm R, Strand T, Hallmans G. 1986 Zinc, total protein, and albumin in CSF of patients with cerebrovascular diseases. Acta Neurol Scand 74, 308-313.

    Google Scholar 

  • Palmiter RD, Cole TB, Quaife CJ, Findley SD. 1996 ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA 93, 14934-14939.

    Google Scholar 

  • Palmiter RD, Findley SD, Whitmore TE, Durnam DM. 1992 MTIII, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci USA 89, 6333-6337.

    Google Scholar 

  • Pei Y, Zhao D, Huang J, Cao L. 1983 Zinc-induced seizures: a new experimental model of epilepsy. Epilepsia 24, 169-176.

    Google Scholar 

  • Perez-Clausell J, Danscher G. 1985 Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study. Brain Res 337, 91-98.

    Google Scholar 

  • Peters DP. 1979 Effects of prenatal nutritional deficiency on affiliation and aggression in rats. Physiol Behav 20, 359-362.

    Google Scholar 

  • Prasad AS, Oberleas, D. 1970 Binding of zinc to amino acids and serum proteins in vitro. J Lab Clin Med 76, 416-425.

    Google Scholar 

  • Prohaska JR. 1987 Functions of trace elements in brain metabolism. Physiol Rev 67, 858-901.

    Google Scholar 

  • Prohaska JR, Luecke RW, Jasinski R. 1974 Effect of zinc defi-ciency from day 18 of gestation and/or during lactation on the development of some rat brain enzymes. J Nutr 104, 1525-1531.

    Google Scholar 

  • Pullen RGL, Franklin PA, Hall GH. 1990 65Zinc uptake from blood into brain and other tissues in the rat. Neurochem Res 15, 1003-1008.

    Google Scholar 

  • Pullen RGL, Franklin PA, Hall GH. 1991 65Zn uptake from blood into brain in the rat. J Neurochem 56, 485-489.

    Google Scholar 

  • Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, Rahmani Z, Krizus A, Mckenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, Van den Bergh R, Hung WY, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak-Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RHJ. 1993 Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59-62.

    Google Scholar 

  • Sandstead HH, Frederickson CJ, Penland JG. 2000 History of zinc as related to brain function. J Nutr 130, 496S-502S.

    Google Scholar 

  • Sato M, Bremner I. 1993 Oxygen free radicals and metallothionein. Free Radicals Biol Med 14, 325-337.

    Google Scholar 

  • Sawashita J, Takeda A, Okada S. 1997 Change of zinc distribution in rat brain with increasing age. Dev Brain Res 102, 295-298.

    Google Scholar 

  • Sensi SL, Canzoniero LMT, Yu SP, Ying HS, Koh JY, Kerchner GA, Choi DW. 1997 Measurement of intracellular free zinc in living cortical neurons: Routes of entry. J Neurosci 15, 9554-9564.

    Google Scholar 

  • Shagal A. 1980 Functions of the hippocampal system. Trends Neurosci 3, 116-119.

    Google Scholar 

  • Shigihara S, Ikui A, Shigihara J, Tomita H, Okano M. 1987 Electron microscopy of the olfactory epithelium in zinc-deficient rats. Ann NY Acad Sci 510, 606-609.

    Google Scholar 

  • Sloviter R. 1985 A selective loss of hippocampal mossy fiber Timm stain accompanies granule cell seizure activity induced by perforant path stimulation. Brain Res 330, 150-153.

    Google Scholar 

  • Smart TG, Xie X, Krishek BJ. 1994 Modulation of inhibitory and excitatory amino acid receptor ion channels by zinc. Prog Neurobiol 42, 393-441.

    Google Scholar 

  • Spiridon M, Kamm D, Billups B, Mobbs P, Attwell D. 1998 Modulation by zinc of the glutamate transporters in glial cells and cones isolated from the tiger salamander retina. J Physiol 506, 363-376.

    Google Scholar 

  • Sterman MB, Shouse MN, Fairchild MD. 1988 Zinc and seizure mechanisms. In: Morley JE, Sterman MB, Walsh JH, eds. Nutritional modulation of neural function. San Diego: Academic Press: 307-319.

    Google Scholar 

  • Szerdahelyi P, Kozma M, Ferke A. 1982 Zinc-deficiency-induced trace element concentration and localization changes in the central nervous system of albino rat during postnatal development. Acta Histochem 70, 173-182.

    Google Scholar 

  • Takeda A. 2000 Movement of zinc and its functional significance in the brain. Brain Res Rev 34, 137-148.

    Google Scholar 

  • Takeda A, Akiyama T, Sawashita J, Okada S. 1994a Brain uptake of trace metals, zinc and manganese, in rats. Brain Res 640, 341-344.

    Google Scholar 

  • Takeda A, Ishiwatari S, Okada S. 2000a Influence of transferrin on manganese uptake in rat brain. J Neurosci Res 59, 542-552.

    Google Scholar 

  • Takeda A, Hanajima T, Ijiro H, Ishige A, Iizuka S, Okada S, Oku N. 1999a Release of zinc from the brain of El (epilepsy) mice during seizure induction. Brain Res 828, 174-178.

    Google Scholar 

  • Takeda A, Kawai M, Okada S. 1997a Zinc distribution in the brain of Nagase analbuminemic rat and enlargement of the ventricular system. Brain Res 769, 193-195.

    Google Scholar 

  • Takeda A, Kodama Y, Ohnuma M, Okada S. 1998 Zinc transport from the striatum and substantia nigra. Brain Res Bull 47, 103-106.

    Google Scholar 

  • Takeda A, Minami A, Takefuta S, Tochigi M, Oku N. 2001 Zinc homeostasis in the brain of adult rats fed zinc-deficient diet. J Neurosci Res 63, 447-452.

    Google Scholar 

  • Takeda A, Ohnuma M, Sawashita J, Okada S. 1997b Zinc transport in the rat olfactory system. Neurosci Lett 225, 69-71.

    Google Scholar 

  • Takeda A, Sawashita J, Okada S. 1994b Localization in rat brain of the trace metals, zinc and manganese, after intracerebroventricular injection. Brain Res 658, 252-254.

    Google Scholar 

  • Takeda A, Sawashita J, Okada S. 1995 Biological half-lives of zinc and manganese in rat brain. Brain Res 695, 53-58.

    Google Scholar 

  • Takeda A, Sawashita J, Takefuta S, Ohnuma M, Okada S. 1999b Role of zinc released by stimulation in rat amygdala. J Neurosci Res 57, 405-410.

    Google Scholar 

  • Takeda A, Suzuki M, Okada S, Oku N. 2000b 65Zn localization in rat brain after intracerebroventricular injection of 65Zn-histidine. Brain Res 863, 241-244.

    Google Scholar 

  • Takeda A, Suzuki M, Okada S, Oku N. 2000c Influence of histidine on zinc transport into rat brain. J Health Sci 46, 209-213.

    Google Scholar 

  • Takeda A, Takefuta S, Okada S, Oku N. 2000d Relationship between brain zinc and transient learning impairment of adult rats fed zinc-deficient diet. Brain Res 859, 352-357.

    Google Scholar 

  • Tonder N, Johansen FF, Frederickson CJ, Zimmer J, Diemer NH. 1990 Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci Lett 109, 247-252.

    Google Scholar 

  • Traynelis SF, Burgess MF, Zheng F, Lyuboslavsky P, Powers JL. 1998 Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci 18, 6163-6175.

    Google Scholar 

  • Tsuda M, Imaizumi K, Katayama T, Kitagawa K, Wanaka A, Tohyama M, Takagi T. 1997 Expression of zinc transporter gene, ZnT-1, is induced after transient forebrain ischemia in the gerbil. J Neurosci 17, 6678-6684.

    Google Scholar 

  • Tsuji S, Kobayashi H, Uchida Y, Ihara Y, Miyatake T. 1992 Molecular cloning of human growth inhibitory factor cDNA and its down-regulation in Alzheimer's disease. EMBO J 11, 4843-4850.

    Google Scholar 

  • Uchida Y, Takiko K, Titani K, Ihara Y, Tomonaga M. 1991 The growth inhibitory Factor that is deficient in the Alzheimer's disease brain is a 68 amino acid metallothionein-like protein. Neuron 7, 337-347.

    Google Scholar 

  • Vallee BL. 1995 The function of metallothionein. Neurochem Int 27, 23-33.

    Google Scholar 

  • Vallee BL, Auld DS. 1992 Active zinc binding sites of zinc metalloenzymes. In: Birkedal-Hansen H, Werb Z, Welgus H, Wart HV, eds. Matrix Metalloproteinases and Inhibitors. Matrix Supplement 1. Stuttgart: Fischer: 5-19.

    Google Scholar 

  • Vallee BL, Falchuk KH. 1981 Zinc and gene expression. Philos. Trans R Soc Lond B Biol Sci 294, 185-197.

    Google Scholar 

  • Vallee BL, Falchuk KH. 1993 The biological basis of zinc physiology. Physiol Rev 73, 79-118.

    Google Scholar 

  • Vogt K, Mellor J, Tong G, Nicoll R. 2000 The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26, 187-196.

    Google Scholar 

  • Wallwork JC, Milne DB, Sims RL, Sandstead HH. 1983 Severe zinc deficiency: Effects on the distribution of nine elements (potassium, phosphorus, sodium, magnesium, calcium, iron, zinc, copper and manganese) in regions of the rat brain. J Nutr 113, 1895-1905.

    Google Scholar 

  • Wang Y-X, Quastel DMJ. 1990 Multiple actions of zinc on transmitter release at mouse end-plates. Eur J Physiol 415, 582-587.

    Google Scholar 

  • Weiss JH, Hartley DM, Koh JY, Choi DW. 1993 AMPA receptor activation potentiates zinc neurotoxicity. Neuron 10, 43-49.

    Google Scholar 

  • Weiss JH, Koh J, Christine CW, Choi DW. 1989 Zinc and LTP. Nature 338, 212.

    Google Scholar 

  • Wensink J, Lenglet WJM, Vis RD, Van den Hamer CJA. 1987 The effect of dietary zinc deficiency on the mossy fiber zinc content of the rat hippocampus. Histochemistry 87, 65-69.

    Google Scholar 

  • Wensink J, Molenaar AJ, Woroniecka UD, Van den Hamer CJA. 1988 Zinc uptake into synaptosomes. J Neurochem 50, 782-789.

    Google Scholar 

  • Wenzel HJ, Cole TB, Born DD, Schwartzkroin PA, Palmiter RD. 1997 Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc Natl Acad Sci USA 94, 12676-12681.

    Google Scholar 

  • Williamson A, Spencer D. 1995 Zinc reduces dentate granule cell hyperexcitability in epileptic humans. NeuroReport 6, 1562-1564.

    Google Scholar 

  • Xie X, Smart TG. 1991 A physiological role for endogeneous zinc in rat hippocampal synaptic neurotransmission. Nature 349, 521-524.

    Google Scholar 

  • Yamashita T, Shimada S, Guo W, Sato K, Kohmura E, Hayakawa T, Takagi T, Tohyama M. 1997 Cloning and functional expression of a brain peptide/histidine transporter. J Biol Chem 272, 10205-10211.

    Google Scholar 

  • Yin HZ, Weiss JH. 1995 Zn2+ permeates Ca2+ permeable AMPA/kainate channels and triggers selective neural injury. NeuroReport 6, 2553-2556.

    Google Scholar 

  • Yin HZ, Ha DH, Carriedo SG, Weiss JH. 1998 Kainate-stimulated Zn2+ uptake labels cortical neurons with Ca2+-permeable AMPA/kainate channels. Brain Res 781, 45-56.

    Google Scholar 

  • Zerangue N, Kavanaugh MP. 1996 Flux coupling in a neuronal glutamate transporter. Nature 383, 634-637.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, A. Zinc homeostasis and functions of zinc in the brain. Biometals 14, 343–351 (2001). https://doi.org/10.1023/A:1012982123386

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012982123386

Navigation