Skip to main content
Log in

Chemistry for an essential biological process: the reduction of ferric iron

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

In biological systems, the predominant form of iron is the trivalent Fe(III) form, which is potentially not readily bioavailable because of its hydrolysis and polymerization to insoluble forms. It is also the easiest of the two predominant forms of iron to chelate selectively. In a short overview of iron chemistry, we point out some of the pitfalls using standard redox potentials, comment on the interaction of ferric complexes with hydrogen peroxide to give hydroxyl radicals and address the release of iron from ferrisiderophores. In biological systems there are two classes of ferric reductases, the soluble flavin reductases found in prokaryotes, and the membrane-bound cytochrome b-like reductases found in eukaryotes. Finally the role of dissimilatory ferric reduction in microbial respiration and biomineralization is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Archibald FS. 1983 Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol Lett 19, 29-32.

    Google Scholar 

  • Bagnaresi P, Pupillo P. 1995. Characterization of NADH-dependent Fe3+-chelate reductases of maize roots. J Exp Bot 46, 1497-1503.

    Google Scholar 

  • Bagnaresi P, Basso B, Pupillo P. 1997 The NADH-dependent Fe3+-chelate reductases of tomato roots. Planta 202, 427-434.

    Google Scholar 

  • Coves J, Fontecave M. 1993 Reduction and mobilization of iron by a NAD(P)H: Flavin oxidoreductase from Escherichia coli. Eur J Biochem 211, 635-641.

    Google Scholar 

  • Crichton RR. 2001 Inorganic Biochemistry of Iron Metabolism. Chichester: J. Wiley & Sons.

    Google Scholar 

  • Finegold A, Shatwell KP, Segal AW et al. 1996 Intramembrane bisheme motif for transmembrane electron transport conserved in a yeast iron reductase and the human NADPH oxidase. J Biol Chem 271, 31021-31024.

    Google Scholar 

  • Fontecave M, Coves J, Pierre JL. 1994 Ferric reductases or flavin reductases? Biometals 7, 3-8.

    Google Scholar 

  • Gold T. 1992 The deep, hot biosphere. Proc Natl Acad Sci USA 89, 6045-6049.

    Google Scholar 

  • Gunshin H, McKenzie B, Berger UV et al. 1997 Cloning and characterization of amammalian proton-coupled metal-ion transporter. Nature 388, 482-488.

    Google Scholar 

  • Ingelman M, Ramaswamy, Nivière V et al. 1999 Crystal structure of NAD(P)H: Flavin oxidoreductase from Escherichia coli. Biochemistry 22, 7040-7049.

    Google Scholar 

  • Inman RS, Wessling-Resnick M. 1993 Characterization of transferrin-independent iron transport in K562 cells. Unique properties provide evidence for multiple pathways of iron uptake. J Biol Chem 268, 8521-8528.

    Google Scholar 

  • Lesuisse E, Casteras-Simon M, Labbe P. 1996 Evidence for the Saccharomyces cerevisiae ferrireductase system being a multicomponent electron transport chain. J Biol Chem 271, 13578-13583.

    Google Scholar 

  • Liu SV, Zhou J, Zhang C, Cole DR et al. 1997 Thermophilic Fe(III)-reducing bacteria from the deep subsurface: The evolutionary implications. Science 277, 1106-1109.

    Google Scholar 

  • Lovley D, Stolz JF, Nord GL et al. 1987 Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330, 252-254.

    Google Scholar 

  • Mc Kay DS, Gibson EK, Thomas-Keprta KL et al. 1996 Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001. Science 273, 924-930.

    Google Scholar 

  • McKie AT, Barrow D, Latunde-Dada GO et al. 2001 An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755-1759.

    Google Scholar 

  • Neilands JB. 1995 Siderophores: Structure and function of microbial iron transport compounds. J Biol Chem 270, 26723-26726.

    Google Scholar 

  • Pierre JL, Fontecave M. 1999 Iron and activated oxygen species in biology: The basic chemistry. Biometals 12, 195-199.

    Google Scholar 

  • Radisky D, Kaplan J. 1999 Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 274, 4481-4484.

    Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL et al. 1999 A ferric-chelate reductase for iron uptake from soils. Nature 397, 694-697.

    Google Scholar 

  • Shatwell K P, Dancis A, Cross AR et al. 1996 The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase. J Biol Chem 271, 14240-14244.

    Google Scholar 

  • Vargas M, Kashefi K, Blunt-Harris EL et al. 1998 Microbiological evidence for Fe(III) reduction on early Earth. Nature 395, 65-67.

    Google Scholar 

  • Walker JCG 1987 Was the Archean biosphere upside down? Nature 329, 710-712.

    Google Scholar 

  • Yun CW, Bauler M, Moore RE et al. 2001 The role of the FRE family of plasma membrane reductases in the uptake of siderophore-iron in Saccharomyces cerevisiae. J Biol Chem 276, 10218-10223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pierre, J., Fontecave, M. & Crichton, R. Chemistry for an essential biological process: the reduction of ferric iron. Biometals 15, 341–346 (2002). https://doi.org/10.1023/A:1020259021641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020259021641

Navigation