Skip to main content
Log in

Ideal-Gas Heat Capacities and Virial Coefficients of HFC Refrigerants

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermodynamic properties of HFC (hydrofluorocarbon) compounds have been extensively studied with worldwide interest as alternative refrigerants. Both quality and quantity in the experimental data far exceed those for the CFC and HCFC refrigerants. These data now provide a great opportunity to examine the validity of theoretical models, and vice versa. Among them, the ideal-gas heat capacity C 0p and virial coefficients derived from the experimental data are of particular interest, since they are directly related to the intramolecular and intermolecular potentials through the statistical mechanical procedure. There have been some discrepancies reported in the observed and theoretical C 0p for HFC compounds. We have performed new calculations of C 0p for several HFCs. The present results are consistent with the selected experimental values. The second (B) and third (C) virial coefficients have been reported for these HFC refrigerants from speed of sound data and Burnett PVT data. Often, a square well-type intermolecular potential is employed to correlate the data. However, the model potential cannot account consistently for both B and C coefficients with the same potential parameters. We have analyzed the data with the Stockmayer potential and obtained self-consistent results for various HFC (R-23, R-32, R-125, R-134a, R-143a, and R-152a) compounds with physically reasonable potential parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. S. Rodgers, R. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data 3:117 (1974).

    Google Scholar 

  2. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data 14:Suppl No. 1 (1985).

    Google Scholar 

  3. R. E. Pennington and K. A. Kobe, J. Chem. Phys. 22:1442 (1954).

    Google Scholar 

  4. S. S. Chen, A. S. Rodgers, J. Chao, R. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data 4:441 (1975).

    Google Scholar 

  5. K. S. Pitzer and W. D. Gwinn, J. Chem. Phys. 10:428 (1948).

    Google Scholar 

  6. D. A. Long, R. B. Graenor, and D. T. Jones, Trans. Faraday Soc. 60:1509 (1964).

    Google Scholar 

  7. R. W. Kirk and P. M. Wilt, J. Mol. Spectrosc. 58:102 (1975).

    Google Scholar 

  8. R. Tillner-Roth and A. Yokozeki, J. Phys. Chem. Ref. Data 26:1273 (1997).

    Google Scholar 

  9. T. Hozumi, H. Sato, and K. Watanabe, J. Chem. Eng. Data 39:493 (1994).

    Google Scholar 

  10. J. R. Nielsen, H. H. Claassen, and N. B. Moran, J. Chem. Phys. 23:329 (1955).

    Google Scholar 

  11. S. Kinumaki and M. Kozuka, Bull. Chem. Soc. Japan 41:809 (1968).

    Google Scholar 

  12. F. B. Brown, A. D. H. Claugue, N. D. Heitkamp, D. F. Koster, and A. Danti, J. Mol. Spectrosc. 24:163 (1967).

    Google Scholar 

  13. D. A. C. Compton and D. M. Rayner, J. Phys. Chem. 86:1628 (1982).

    Google Scholar 

  14. J. Chao and A. S. Rodgers, TRC Thermodynamic Tables Non-Hydorocarbons, VIII (1989), v-6881.

    Google Scholar 

  15. K. A. Gillis, Int. J. Thermophys. 18:73 (1997).

    Google Scholar 

  16. T. Hozumi, H. Sato, and K. Watanabe, Int. J. Thermophys. 17:587 (1996).

    Google Scholar 

  17. W. F. Edgell, T. R. Riethof, and C. J. Ward, J. Mol. Spectrosc. 11:92 (1963).

    Google Scholar 

  18. J. R. Nielsen and C. J. Halley, J. Mol. Spectrosc. 17:341 (1965).

    Google Scholar 

  19. A. Danti and J. L. Wood, J. Chem. Phys. 30:582 (1959).

    Google Scholar 

  20. A. R. H. Goodwin and M. R. Moldover, J. Chem. Phys. 93:2741 (1990).

    Google Scholar 

  21. T. Hozumi, H. Sato, and K. Watanabe, J. Chem. Eng. Data 41:1187 (1996).

    Google Scholar 

  22. R. S. Basu and D. P. Wilson, Int. J. Thermophys. 10:591 (1989).

    Google Scholar 

  23. D. F. Harnish and R. P. Hirschmann, Appl. Spectrosc. 24:28 (1970).

    Google Scholar 

  24. P. N. Brier, J. Mol. Structure 6:23 (1970).

    Google Scholar 

  25. W. Beckermann and F. Kohler, Int. J. Thermophys. 16:455 (1995).

    Google Scholar 

  26. M. Tuerk, M. Crone, and K. Bier, J. Chem. Thermodyn. 28:1179 (1996).

    Google Scholar 

  27. M. S. Zhu, L. Z. Han, K. Z. Zhang, and T. Y. Zhou, Int. J. Thermophys. 14:1039 (1990).

    Google Scholar 

  28. J. R. Nielsen, H. H. Classen, and D. C. Smith, J. Chem. Phys. 18:1471 (1950).

    Google Scholar 

  29. J. R. Durig, S. M. Craven, K. K. Lau, and J. Bragin, J. Chem. Phys. 54:479 (1971).

    Google Scholar 

  30. W. L. Meerts and I. Ozier, Chem. Phys. 152:241 (1991).

    Google Scholar 

  31. J. Chao and A. S. Rodgers, TRC Thermodynamic Tables Non-Hydorocardbons, VIII (1989), v-6880.

    Google Scholar 

  32. R. D. Cowan, G. Herzberg, and S. P. Sinha, J. Chem. Phys. 18:1538 (1950).

    Google Scholar 

  33. J. Hatcher and D. M. Yost, J. Chem. Phys. 5:992 (1937).

    Google Scholar 

  34. G. T. Fraser, A. S. Pine, J. L. Domench, and B. H. Pate, J. Chem. Phys. 99:2396 (1993).

    Google Scholar 

  35. R. Kubo (ed.), Thermodynamics and Statistical Mechanics (in Japanese), (Shokabo, Tokyo, 1961), p. 209.

    Google Scholar 

  36. D. C. Smith, R. A. Saunders, J. R. Nielsen, and E. E. Ferguson, J. Chem. Phys. 20:847 (1952).

    Google Scholar 

  37. W. G. Fately and F. A. Miller, Spectrochim. Acta 17:857 (1961).

    Google Scholar 

  38. A. S. Rodgers, TRC Thermodynamic Tables Non-Hydorocarbons, VIII (1981), v-6690.

    Google Scholar 

  39. T. Hozumi, T. Koga, H. Sato, and K. Watanabe, Int. J. Thermophys. 14:739 (1993).

    Google Scholar 

  40. R. M. Villamanan, W. D. Chen, G. Wlodarczak, J. Demaison, A. G. Lesarri, J. C. Lopez, and J. L. Alonso, J. Mol. Spectrosc. 171:223 (1995).

    Google Scholar 

  41. J. O. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  42. T. Kihara, Nippon-Sugaku-Busturigakaishi 17:11 (1943) (in Japanese).

    Google Scholar 

  43. W. H. Stockmayer, J. Chem. Phys. 9:398, 863 (1941).

    Google Scholar 

  44. J. S. Rowlinson, J. Chem. Phys. 19:827 (1951).

    Google Scholar 

  45. T. Kihara, J. Phys. Soc. Japan 3:265 (1948).

    Google Scholar 

  46. R. B. Bird, E. L. Spotz, and J. O. Hirschfelder, J. Chem. Phys. 18:1395 (1950).

    Google Scholar 

  47. T. Kihara, J. Phys. Soc. Japan 6:184 (1951).

    Google Scholar 

  48. C. W. Meyer and G. Morrison, J. Phys. Chem. 95:3860 (1991).

    Google Scholar 

  49. R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed. (McGraw-Hill, New York, 1987).

    Google Scholar 

  50. H. Sutter and R. H. Cole, J. Chem. Phys. 52:132 (1970).

    Google Scholar 

  51. H. B. Lange, Jr., and F. P. Stein, J. Chem. Eng. Data 15:56 (1970).

    Google Scholar 

  52. B. de Vries, Ph.D. dissertation (University of Hannover, Hannover, 1997).

  53. T. Hozumi, Ph.D. dissertation (Keio University, Yokohama, 1997).

  54. D. R. Defibaugh, G. Morrison, and L. A. Weber, J. Chem. Eng. Data 39:333 (1994).

    Google Scholar 

  55. L. A. Weber, Int. J. Thermophys. 15:461 (1994).

    Google Scholar 

  56. H.-L. Zhang, Ph.D. dissertation (Keio University, Yokohama, 1997).

  57. S. J. Boyes and L. A. Weber, J. Chem. Thermodyn. 27:163 (1994).

    Google Scholar 

  58. C. M. Bignell and P. J. Dunlop, J. Chem. Phys. 98:4889 (1993).

    Google Scholar 

  59. R. Tillner-Roth and H.D. Baehr, J. Chem. Thermodyn. 24:413 (1992).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokozeki, A., Sato, H. & Watanabe, K. Ideal-Gas Heat Capacities and Virial Coefficients of HFC Refrigerants. International Journal of Thermophysics 19, 89–127 (1998). https://doi.org/10.1023/A:1021499018749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021499018749

Navigation