Skip to main content
Log in

Influence of Light and Photosynthesis on Alkaloid Concentration in Larkspur

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Concentrations of toxic norditerpenoid alkaloids vary greatly in tall larkspur (Delphinium barbeyi) and may be influenced by environmental stress. We evaluated the effect of shade, darkness, and inhibition of photosynthesis on toxic alkaloid concentration. In plants treated with metribuzin to inhibit photosynthesis, alkaloid concentration increased, but dry weight of the plants decreased as growth ceased, leaving absolute alkaloid content similar to that of control plants. Short-term shade (70% reduction in sunlight for three days), dark treatments from leaves collected at night, and aluminum foil covered leaves all increased alkaloid concentration in comparison to untreated control plants. It appears that absolute amounts of alkaloids remained the same, but the mass of stressed plants declined as nonstructural carbohydrates were depleted, thus increasing the relative concentration of alkaloids. We conclude that norditerpenoid alkaloids in larkspur do not respond to short-term light stress. Alkaloid concentration was lower in larkspur plants growing beneath forest canopy and in potted plants in a long-term shade study (70% reduction in sun light for 21 days) than plants growing in open sunlight. Long-term shade may have reduced synthesis of norditerpenoid alkaloids, particularly in the earlier developmental stages of the plant. Shade stress or photosynthesis inhibition apparently did not increase norditerpenoid alkaloid synthesis, which contrasts with the carbon/nutrient balance theory of plant defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aerts, R. J., Snoeijer, W., Aerts-Teorlink, O., vander Meijden, E., and Verpoorte, R. 1991. Control and biological implications of alkaloid synthesis in Cinchona seedlings. Phytochemistry 30:3571–3577.

    Google Scholar 

  • Baldwin, I. T. 1988. Damaged-induced alkaloids in tobacco: Pot-bound plants are not indictable. J. Chem. Ecol. 14:1113–1120.

    Google Scholar 

  • Baldwin, I. T. 1991. Damage induced alkaloids in wild tobacco, pp. 47–69, in D. W. Tallamy and M. J. Raupp (eds.). Phytochemical Induction by Herbivores. John Wiley & Sons, New York.

    Google Scholar 

  • Bryant, J. P., Chapin, F. S., and Klein, D. R. 1983. Carbon/nutrient balance in boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.

    Google Scholar 

  • Bryant, J. P., Reichardt, P. B., and Clausen, T. P. 1992. Chemically mediated interactions between woody plants and browsing mammals. J. Range. Manage. 45:18–24.

    Google Scholar 

  • Coleman, J. S., Jones, C. G., and Smith, W. A. 1987. The effect of ozone on cottonwood leaf rust interactions: independence of abiotic stress, genotype and leaf ontogeny. Can. J. Bot. 65:949–953.

    Google Scholar 

  • Coley, P. D., Bryant, J. P., and Chapin, F. S. III. 1985. Resource availability and plant anti-herbivore defense. Science 230:895–899.

    Google Scholar 

  • DeLuca, V., Fernandez, J. A., Campbell, D., and Kurz, W. G. W. 1988. Developmental regulation of enzymes of indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol. 86:447–450.

    Google Scholar 

  • Devine, M. D., Duke, S. O., and Fedtke, C. 1993. Physiology of Herbicide Actions. Prentice-Hall, Englewood Cliffs, New Jersey, pp. 113–140.

    Google Scholar 

  • Frischknecht, P. M., Almer-Dufek, J., Bauman, T. W. 1986. Purine alkaloid formation in buds and developing leaflets of Coffea arabica: Expression of an optimal defense strategy? Phytochem. 25:613–616.

    Google Scholar 

  • Fujimori, N., Suzuki, T., and Ashihora, H. 1991. Seasonal variation in biosynthetic capacity for synthesis of caffeine in tea leaves. Phytochemistry 30:2245–2248.

    Google Scholar 

  • Gardner, D. R., Manners, G. D., Ralphs, M. H., and Pfister, J. A. 1997. Quantitative analysis of norditerpenoid alkaloids in larkspur (Delphinium spp.). Phytochem. Anal. 8:55–62.

    Google Scholar 

  • Gershenzon, J. 1994. Metabolic costs of terpenoid accumulation in higher plants. J. Chem. Ecol. 20:1281–1328.

    Google Scholar 

  • Halkier, B. A., and Moller, B. L. 1989. Biosynthesis of the cyanogenic glucoside dhurrin in seedlings of Sorghum bicolor (L.) and partial purification of the enzyme system involved. Plant Physiol. 90:1552–1559.

    Google Scholar 

  • Lerdau, M., Litvak, M., and Monson, R. 1994. Plant chemical defense: Monoterpenes and the growth-differentiation balance hypothesis. Trends Ecol. Evol. 9:58–61.

    Google Scholar 

  • Lorio, P. L., Jr. 1986. Growth differentiation balance: A basis for understanding southern pine beetle-tree interactions. Forest Ecol. Manage. 14:259–278.

    Google Scholar 

  • Majak, W., Parkinson, P. D., Williams, R. J., Looney, N. E., and VanRyswyk, A. L. 1977. The effect of light and moisture on Columbia milkvetch toxicity in lodgepole pine forests. J. Range Manage. 30:423–427.

    Google Scholar 

  • Manners, G. D., and Pfister, J. A. 1993. Normal phase liquid chromatographic analysis of toxic norditerpenoid alkaloids. Phytochem. Anal. 4:14–18.

    Google Scholar 

  • Manners, G. D., and Pfister, J. A. 1996. Sampling a poisonous plant population: Quantifying toxic alkaloids in tall larkspur (Delphinium barbeyi) leaves. Weed Sci. 44:782–788.

    Google Scholar 

  • Manners, G. D., Panter, K. E., Ralphs, M. H., Pfister, J. A., Olsen, J. D., and James, L. F. 1993. Toxicity and chemical phenology of norditerpenoid alkaloids in the tall larkspurs (Delphinium species). J. Agric. Food Chem. 41:96–100.

    Google Scholar 

  • Manners, G. D., Panter, K. E., and Pelletier, S. W. 1995. Structure-activity relationships of norditerpenoids alkaloids occurring in toxic larkspur (Delphinium) species. J. Nat. Prod. 58:863–869.

    Google Scholar 

  • Mooney, H. A., Gulmon, S. L., and Johnson, N. D. 1983. Physiological constraints on plant chemical defenses, pp. 21–36, in P. A. Hedin (ed.). Plant Resistance to Insects. ACS Symposium Series No. 208, American Chemical Society, Washington, DC.

    Google Scholar 

  • Nielsen, D. B. and Ralphs, M. H. 1988. Larkspur: Economic considerations, pp. 119–130, in L. F. James, M. H. Ralphs, and D. B. Nielsen (eds.). The Ecology and Economic Impact of Poisonous Plants on Livestock Production. Westview Press, Boulder, Colorado.

    Google Scholar 

  • Olsen, J. D. 1978. Tall larkspur poisoning in cattle and sheep. J. Am. Vet. Med. Assoc. 173:762–765.

    Google Scholar 

  • Pfister, J. A., Ralphs, M. H., and Manners, G. D. 1988. Cattle grazing tall larkspur on Utah mountain rangeland. J. Range Manage. 41:118–122.

    Google Scholar 

  • Pfister, J. A., Manners, G. D., Gardner, D. R., and Ralphs, M. H. 1994. Toxic alkaloid levels in tall larkspur (Delphinium barbeyi) in western Colorado. J. Range Manage. 47:355–358.

    Google Scholar 

  • Porter, A. J. R., Morton, A. M., Kiddle, G., Doughty, K. J., and Wallsgroce, R. M. 1991. Variation in the glucosinolate content of oilseed rape leaves: (1) Effect on leaf age and position. Ann. Appl. Biol. 118:461–467.

    Google Scholar 

  • Ralphs, M. H., Olsen, J. D., Pfister, J. A., and Manners, G. D. 1988. Plant-animal interactions in larkspur poisoning in cattle. J. Anim. Sci. 66:2334–2342.

    Google Scholar 

  • Ralphs, M. H., Manners, G. D., Pfister, J. A., Gardner, D. R., and James, L. F. 1997. Toxic alkaloid concentration in tall larkspur species in the western US. J. Range Manage. 50:497–502.

    Google Scholar 

  • Ralphs, M. H., Gardner, D. A., Jones, W. A., and Manners, G. D. 1998. Norditerpenoid alkaloid concentration in tall larkspur plants damaged by the larkspur mirid. J. Chem. Ecol. Submitted.

  • Smart, D. R., Chatterton, N. J., and Bugbee, B. 1994. The influence of elevated CO2 on nonstructural carbohydrate distribution and fructan accumulation in wheat canopies. Plant Cell Environ. 17:435–442.

    Google Scholar 

  • Van Dam, N. M. and Vrieling, K. 1994. Genetic variation in constitutive and inducible pyrrolizidine alkaloid levels in Cynglossum officinale L. Oecologia 99:374–378.

    Google Scholar 

  • Vrieling, K., De Vos, H., and Van Wijk, C. A. M. 1993. Genetic analysis of the concentrations of pyrrolizidine alkaloids in Senecio jacobaea. Phytochemistry 32:1141–1144.

    Google Scholar 

  • Wink, M., and Witte, L. 1984. Turnover and transport of quinolizidine alkaloids. Diurnal fluctuations of lupanine in the phloem sap, leaves and fruits of Lupinus albus. Planta 161:519–524.

    Google Scholar 

  • Zangerl, A. R., and Brenenbaum, M. R. 1990. Furanocoumarin induction in wild parsnip: Genetics and population variation. Ecology 71:1933–1940.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ralphs, M.H., Manners, G.D. & Gardner, D.R. Influence of Light and Photosynthesis on Alkaloid Concentration in Larkspur. J Chem Ecol 24, 167–182 (1998). https://doi.org/10.1023/A:1022301331804

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022301331804

Navigation