Skip to main content
Log in

Auxin activity and molecular structure of 2-alkylindole-3-acetic acids

  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

2-Methylindole-3-acetic acid (2-Me-IAA) is a known auxin, but its 2-ethyl homologue has been considered inactive. Here we show that the compound previously bioassayed as ‘2-ethylindole-3-acetic acid’ (2-Et-IAA) was, in fact, 3-(3-methylindol-2-yl)propionic acid. The proper 2-Et-IAA and its 2-(n-propyl) homologue (2-Pr-IAA) are prepared, unambiguously characterized, and their auxin activity is demonstrated in the Avena coleoptile-section straight-growth test. Their half-optimal concentrations are approximately the same as for 2-Me-IAA (2 × 10−5mol L−1), and hence about ten times larger than for unsubstituted indole-3-acetic acid (IAA) and its derivatives alkylated in positions 4, 5, 6 or 7. The optimal response elicited by 2-Et-IAA and 2-Pr-IAA is about half that observed for 2-Me-IAA. These characteristics place the three 2-alkyl-IAAs along the borderline between the classes of strong and weak auxins, thus corroborating the results of interaction similarity analysis, a mathematical approach based on the capability of auxin molecules to participate in non-bonding interactions with a generalized receptor protein. X-ray diffraction analysis shows no explicit structural features to be blamed for the decrease in auxin activity caused by attaching a 2-alkyl substituent to the IAA molecule; sterical interference of the 3-CH2COOH group and the 2-alkyl moiety is barely recognizable in the crystalline state. Quantum-chemical calculations and molecular dynamics simulations suggest that 2-alkyl-IAAs, in the absence of crystal-packing restraints, prefer conformations with the CH2-COOH bond tilted to the heterocyclic ring system. Substantially higher conformational energy (and hence lower abundance) is predicted for planar conformers which were previously shown to prevail for IAA and many of its derivatives substituted in the benzene moiety of the indole nucleus. This shift in the rotational preferences of the -CH2COOH moiety may be one of the reasons for the reduced plant-growth promoting activity of 2-alkyl-IAAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antolić S., Kojić-Prodić B., Tomić S., Nigović B., Magnus V. and Cohen J.D. 1996. Structural studies on monofluorinated derivatives of the phytohormone indole-3-acetic acid (auxin). Acta Crystallogr., Sect. B: Struct. Sci. 52: 651–661.

    Google Scholar 

  • Antolić S., Salopek B., Kojić-Prodić B., Magnus V. and Cohen J.D. 1999. Structural characterization and auxin properties of dichlorinated indole-3-acetic acids. Plant Growth Regul. 27: 21–31.

    Google Scholar 

  • Carbó R. and Calabuig B. 1992. Molecular quantum similarity measures and n-dimensional representation of quantum objects. I. Theoretical foundations. Int. J. Quant. Chem. 42: 1681–1693.

    Google Scholar 

  • Catalá C., Östin A., Chamarro J., Sandberg G. and Crozier A. 1992. Metabolism of indole-3-acetic acid by pericarp discs from immature and mature tomato (Lycopersicon esculentum Mill.). Plant Physiol. 100: 1457–1463.

    Google Scholar 

  • Chandra U., Gupta A.A. and Sengupta A.K. 1980. Studies on potential juvenile hormone analogs: part I – Synthesis & physical studies of some heterocyclic geranyl & citronellyl ethers, their epoxides, hydrochlorides & bromides. Indian J. Chem., Sect B: Org. Chem. Incl. Med. Chem. 19: 528–531.

    Google Scholar 

  • Cosgrove D.J. 1998. Cell wall loosening by expansins. Plant Physiol. 118: 333–339.

    Google Scholar 

  • Dauber-Osguthorpe P., Roberts V.A., Osguthorpe D.J., Wolff J., Genest M. and Hagler A.T. 1988. Structure and energetics of ligand binding to proteins: Escherichia coli difolate reductasetrimethoprim, a drug-receptor system. Proteins: Struct., Funct., Genet. 4: 31–47.

    Google Scholar 

  • DISCOVER, release 1997. Molecular Simulations, Inc., San Diego, CA, USA.

  • Ernstsen A., Sandberg G. and Lundström K. 1987. Identification of oxindole-3-acetic acid, and metabolic conversion of indole-3-acetic acid to oxindole-3-acetic acid in seeds of Pinus sylvestris. Planta 172: 47–52.

    Google Scholar 

  • Hatano T., Katayama M. and Marumo S. 1987. 5,6-Dichloroindole-3-acetic acid as a potent auxin: its synthesis and biological activity. Experientia 43: 1237–1239.

    Google Scholar 

  • Hoffmann O.L., Fox S.W. and Bullock M.W. 1952. Auxin-like activity of systematically substituted indoleacetic acids. J. Biol. Chem. 196: 437–441.

    Google Scholar 

  • Johnson C.K. 1976. ORTEPII. Report ORNL – 5138. Oak Ridge National Laboratory, Tennessee, USA.

    Google Scholar 

  • Jönsson L. 1961. Chemical structure and growth activity of auxins and antiauxins. In: Ruhland W. (ed.), Encyclopedia of Plant Physiology. Vol. 14. Springer-Verlag, Berlin, pp. 958–1006.

    Google Scholar 

  • Katayama M., Kato Y., Hatano T., Hatori M. and Marumo S. 1998. Synthesis and biological activities of 5,6-difluoroindole-3-acetic acid; a new fluoroindole auxin. J. Pesticide Sci. 23: 289–295.

    Google Scholar 

  • Katekar G.F. 1979. Auxins: on the nature of the receptor site and molecular requirements for auxin activity. Phytochemistry 18: 223–233.

    Google Scholar 

  • Kearsley S.K. and Smith G.M. 1990. SEAL. Tetrahedron Computer Methodol. 3: 615.

    Google Scholar 

  • Klämbt H.D. 1959. Die 2-Hydroxy-indol-3-essigsäure, ein pflanzliches Indolderivat. Naturwissenschaften 46: 649.

    Google Scholar 

  • Kloetzel M.C. 1948. Reactions of nitroparaffins. II. Addition of nitroparaffins to unsaturated esters. J. Am. Chem. Soc. 70: 3571–3576.

    Google Scholar 

  • Kögl F. and Kostermans D.G.F.R. 1935. Ñber die Konstitutions-Spezifizität des Hetero-auxins. Hoppe Seyler's Z. physiol. Chem. 235: 201–216.

    Google Scholar 

  • Kojić-Prodić B., Nigović B., Tomić S., Ilić N., Magnus V., Giba Z. et al. 1991. Structural studies on 5-(n-alkyl)-substituted derivatives of the plant hormone indole-3-acetic acid. Acta Crystallogr., Sect. B: Struct. Sci. 47: 1010–1019.

    Google Scholar 

  • Larsen P. 1961. Biological determination of natural auxin. In: Ruhland W. (ed.), Encyclopedia of Plant Physiology. Vol. 14. Springer-Verlag, Berlin, pp. 521–582.

    Google Scholar 

  • Lawson W.B., Patchornik A. and Witkop B. 1960. Substitution, oxidation and group participation in the bromination of indoles. J. Am. Chem. Soc. 82: 5918–5923.

    Google Scholar 

  • Le Goffic F., Gouyette A. and Ahoud A. 1973. Une nouvelle synthèse de l'ellipticine et ses analogues structuraux. Tetrahedron 29: 3357–3362.

    Google Scholar 

  • Libbenga K.R., Maan A.C., van der Linde P.C.G. and Mennes A.M. 1986. Auxin receptors. In: Chadwick C.M. and Garrod D.R. (eds), Hormones, Receptors and Cellular Interactions in Plants. Cambridge University Press, Cambridge, UK, pp. 1–68.

    Google Scholar 

  • McDonald H. 1997. Auxin perception and signal transduction. Physiol. Plant. 100: 423–430.

    Google Scholar 

  • Mitchell J.W. and Livingston G.A. 1968. Methods of studying plant hormones and growth-regulating substances. Agriculture Handbook No. 336. Agricultural Research Service, United States Department of Agriculture, Washington, DC, USA.

    Google Scholar 

  • Muir R.M. and Hansch C. 1953. On the mechanism of action of growth regulators. Plant Physiol. 28: 218–232.

    Google Scholar 

  • Muir R.M., Hansch C.H. and Gallup A.H. 1949. Growth regulation by organic compounds. Plant Physiol. 24: 359–366.

    Google Scholar 

  • Nigović B., Antolić S., Kojić-Prodić B., Kiralj R., Magnus V. and Salopek-Sondi B. 2000. Correlation of structural and physicochemical parameters with the bioactivity of alkylated derivatives of indole-3-acetic acid, a phytohormone (auxin). Acta Crystallogr., Sect. B: Struct. Sci. 56: 94–111.

    Google Scholar 

  • Östin A., Catalá C., Chamarro J. and Sandberg G. 1995. Identification of glucopyranosyl-β-4,1-glucopyranosyl-β-1-N-oxindole-3-acetyl-N-aspartic acid, a new IAA-catabolite, with liquid chromatography-tandem mass spectroscopy. J. Mass Spectrom. 30: 1007–1017.

    Google Scholar 

  • Östin A., Kowalczyk M., Bhalerao R.P. and Sandberg G. 1998. Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol. 118: 285–296.

    Google Scholar 

  • Östin A., Monteiro A.M., Crozier A., Jensen E. and Sandberg G. 1992. Analysis of indole-3-acetic acid metabolites from Dalbergia dolichopetala by high performance liquid chromatography-mass spectrometry. Plant Physiol.: 63–68.

  • Plüss R., Jenny T. and Meier H. 1989. IAA-induced adventitious root formation in greenwood cuttings of Populus tremula and formation of 2-indolone-3-acetylaspartic acid, a new metabolite of exogenously supplied indole-3-acetic acid. Physiol. Plant. 75: 89–96.

    Google Scholar 

  • Porter W.L. and Thimann K.V. 1965. Molecular requirements for auxin action – I. Halogenated indoles and indoleacetic acids. Phytochemistry 4: 229–243.

    Google Scholar 

  • Ramek M., Tomić S. and Kojić-Prodić B. 1995. Systematic ab initio SCF conformational analysis of indol-3-ylacetic acid phytohormone (auxin): comparison with experiment and molecular mechanics calculations. Int. J. Quantum Chem.: Quantum Biol. Symp. 22: 75–81.

    Google Scholar 

  • Ramek M.L., Tomić S. and Kojić-Prodić B. 1996. Comparative ab initio SCF conformational study of 4-chloro-indole-3-acetic acid and indole-3-acetic acid phytohormones (auxins). Int. J. Quantum Chem. 60: Quantum Biol. Symp. 23: 3–9.

    Google Scholar 

  • Ramek M. and Tomić S. 1998a. RHF conformational analysis of the auxin phytohormones n-ethyl-indole-3-acetic acid (n = 4, 5, 6). Int. J. Quantum Chem. 70: 1169–1175.

    Google Scholar 

  • Ramek M. and Tomić S. 1998b. Ab initio RHF investigation of mono-and dichlorinated indole-3-acetic acid (IAA) phytohormones. J. Mol. Struct. (Theochem.) 454: 167–173.

    Google Scholar 

  • Ramek M. and Tomić S. 1999. Quantum chemical conformational analysis of the auxin phytohormone 4-methyl-3-indoleacetic acid. Int. J. Quantum Chem. 75: 1003–1008.

    Google Scholar 

  • Reinecke D.M. and Bandurski R.S. 1983. Oxindole-3-acetic acid, an indole-3-acetic acid catabolite in Zea. Plant Physiol. 71: 211–213.

    Google Scholar 

  • Rescher U., Walther A., Schiebl C. and Klämbt D. 1996. In vitro binding affinities of 4-chloro-, 2-methyl-, 4-methyl, and 4-ethylindoleacetic acid to auxin-binding protein 1 (ABP1) correlate with their growth-stimulating activities. J. Plant Growth Regul. 15: 1–3.

    Google Scholar 

  • Riov J. and Bangerth F. 1992. Metabolism of auxin in tomato fruit tissue. Formation of high molecular weight conjugates of oxindole-3-acetic acid via the oxidation of indole-3-acetylaspartic acid. Plant Physiol. 100: 1396–1402.

    Google Scholar 

  • Rokach J. 1973. Indole derivatives. Canadian Patent 926410.

  • SchindlerW. 1958. Indol-2-essigsäure. Helv. Chim. Acta 41: 1441–1443.

    Google Scholar 

  • Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H. et al. 1993. General atomic and molecular electronic structure systems. J. Comput. Chem. 14: 1347–1363.

    Google Scholar 

  • Sell H.M., Wittwer S.H., Rebstock T.L. and Redemann C.T. 1952. Comparative stimulation of parthenocarpy in the tomato by various indole compounds. Plant Physiol. 28: 481–487.

    Google Scholar 

  • Sheldrick G.M. 1996. SADABS program for absorption correction. University of Göttingen, Göttingen, Germany.

    Google Scholar 

  • Sheldrick G.M. 1997a. SHELXS-97. Program for crystal structure solution. University of Göttingen, Göttingen, Germany.

    Google Scholar 

  • Sheldrick G.M. 1997b. SHELXL97. Program for crystal structure refinement. University of Göttingen, Göttingen, Germany.

    Google Scholar 

  • Snyder H.R. and Pilgrim F.J. 1948. The preparation of 3-indoleacetic acid; a new synthesis of tryptophol. J. Am. Chem. Soc.: 3770–3771.

  • Spek A.L. 1993. HELENA program for data reduction. University of Utrecht, Utrecht, The Netherlands.

    Google Scholar 

  • Spek A.L. 1997. PLATON. Molecular geometry program. Version of 1997. University of Utrecht, Utrecht, The Netherlands.

    Google Scholar 

  • Stewart J.J.P. 1990. MOPAC 6.0, available from Quantum Chemistry Program Exchange. Indiana University, Bloomington, Indiana, USA.

    Google Scholar 

  • Tomić S., Gabdoulline R.R., Kojić-Prodić B. and Wade R.C. 1998a. Classification of auxin plant hormones by interaction property similarity indices. J. Computer-Aided Mol. Design 12: 63–79.

    Google Scholar 

  • Tomić S., Gabdoulline R.R., Kojić-Prodić B. and Wade R. 1998b. Classification of auxin related compounds based on similarity of their interaction fields: Extension to a new set of compounds. Internet J. Chem. 1: 26.

    Google Scholar 

  • Tsurumi S. and Wada S. 1986a. Identification of 3-hydroxy-2-indolinone-3-acetylaspartic acid as a new indole-3-acetic acid metabolite in Vicia roots. Plant Cell Physiol. 27: 559–562.

    Google Scholar 

  • Tsurumi S. and Wada S. 1986b. Dioxindole-3-acetic acid conjugates formation from indole-3-acetylaspartic acid in Vicia seedlings. Plant Cell Physiol. 27: 1513–1522.

    Google Scholar 

  • Tuominen H., Östin A., Sandberg G. and Sundberg B. 1994. A novel metabolic pathway for indole-3-acetic acid in apical shoots of Populus tremula (L.) × Populus tremuloides (Michx.). Plant Physiol. 106: 1511–1520.

    Google Scholar 

  • Verley M.A. and Beduwé J. 1925. Méthode générale de préparation des dérivés substitués de l'indole. Bull. Soc. Chim. France 37: 189–191.

    Google Scholar 

  • Walton E., Jenkins S.R., Nutt R.F. and Holly F.W. 1968. Some analogs of 1-p-chlorobenzyl-5-methylindole-3-acetic acid. J. Med. Chem. 11: 1252–1255.

    Google Scholar 

  • Woo E.-J., Marshall J., Bauly J., Chen J.-G., Venis M., Napier R.M. et al. 2002. Crystal structure of auxin-binding protein 1 in complex with auxin. EMBO J. 21: 2877–2885.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antolić, S., Dolušić, E., Kožić, E.K. et al. Auxin activity and molecular structure of 2-alkylindole-3-acetic acids. Plant Growth Regulation 39, 235–252 (2003). https://doi.org/10.1023/A:1022894914226

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022894914226

Navigation