Skip to main content
Log in

Signal Molecules for Plant Defense Responses to Biotic Stress

  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Plants are capable of recognizing the penetrating pathogens and of responding to their attack by the activation of the defense systems. Signal transduction from the receptor to the cell genome is required for this activation. Recently, signal molecules have been found, which are involved in the signal transduction triggered in response to biotic stress. The data accumulated imply the presence of a complex and well-coordinated signal network in plant cells. This net controls plant defense responses to pathogen attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Heath, M.C., Nimchuk, Z.L., and Xu, H., Plant Nuclear Migrations as Indicators of Critical Interactions between Resistant or Susceptible Cowpea Epidermal Cells and Invasion Hyphae of the Cowpea Rust Fungus, New Phytol., 1997, vol. 35, pp. 689–700.

    Google Scholar 

  2. Bolwell, G.P., Role of Active Oxygen Species and NO in Plant Defense Responses, Curr. Opin. Plant Biol., 1999, vol. 2, pp. 287–294.

    Google Scholar 

  3. Hammond-Kosack, K.E. and Jones, J.D., Inducible Plant Defense Mechanisms and Resistance Gene Function, Plant Cell, 1996, vol. 8, pp. 1773–1791.

    Google Scholar 

  4. Somssich, I.E. and Hahlbrock, K., Pathogen Defense in Plants-a Paradigm of Biological Complexity, Trends Plant Sci., 1998, vol. 3, pp. 86–90.

    Google Scholar 

  5. Dmitriev, A.P., Fitoaleksiny i ikh rol' v ustoichivosti rastenii (Phytoalexins and Their Role in Plant Tolerance), Kiev: Naukova Dumka, 1999.

    Google Scholar 

  6. Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.Y., and Hunt, D., Systemic Acquired Resistance, Plant Cell, 1996, vol. 8, pp.1809–1819.

    Google Scholar 

  7. Tarchevsky, I.A., Signal'nye sistemy kletok rastenii (Plant Cell Signaling Systems), Moscow: Nauka, 2002.

    Google Scholar 

  8. De Wit, P.J., Elicitation of Active Resistance Mechanisms, Biology and Molecular Biology of Plant-Pathogen Interactions, Bailey, J.A., Ed., Berlin: Springer-Verlag, 1986, pp. 149–169.

    Google Scholar 

  9. Flor, H.H., The Complementary Genetic Systems in Flax and Flax Rust, Adv. Genet., 1956, vol. 8, pp. 29–54.

    Google Scholar 

  10. Kombrink, E. and Somssich, I.E., Defense Responses of Plants to Pathogens, Advances Botanical Research, Andrews, J.H. and Tommerup, I.C., Eds., New York: Academic, 1995, pp. 1–34.

    Google Scholar 

  11. Bonas, U. and van den Ackerveken, G., Recognition of Bacterial Avirulence Proteins Occurs Inside the Plant Cell: A General Phenomenon in Resistance to Bacterial Disease, Plant J., 1997, vol. 12, pp. 1–8.

    Google Scholar 

  12. Ebel, J. and Scheel, D., Signals in Host-Parasite Interactions, The Mycota, vol. 5., Plant Relationships, Carroll, G.C. and Tudzynski, P., Eds., Berlin: Springer-Verlag, 1997, pp. 85–105.

    Google Scholar 

  13. Nurnberger, T., Signal Perception in Plant Pathogen Defense, Cell Mol. Life Sci., 1999, vol. 55, pp. 167–182.

    Google Scholar 

  14. Nurnberger, T. and Scheel, D., Signal Transmission in the Plant Immune Response, Trends Plant Sci., 2001, vol. 6, pp. 372–379.

    Google Scholar 

  15. Kravchuk, Z.N., Dmitriev, A.P., and Grodzinsky, D.M., Induction of the Oxidative Burst in Elicitor-Treated Cells of Onion (Allium cepa), Rep. Natl. Acad. Sci. Ukraine, 2001, vol. 4, pp. 149–152.

    Google Scholar 

  16. Jabs, T., Tschope, M., Colling, C., Hahlbrock, K., and Scheel, D., Elicitor-Stimulated Ion Fluxes and O2 -from the Oxidative Burst Are Essential Components in Triggering Defense Gene Activation and Phytoalexin Synthesis in Parsley, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 4800–4805.

    Google Scholar 

  17. Baker, B., Zambryski, P., Staskawicz, B., and Dinesh-Kymar, S.P., Signaling in Plant-Microbe Interactions, Science, 1997, vol. 276, pp. 726–733.

    Google Scholar 

  18. Shirasu, K. and Schulze-Lefert, P., Regulators of Cell Death in Disease Resistance, Plant Mol. Biol., 2000, vol. 44, pp. 371–385.

    Google Scholar 

  19. Scheel, D., Resistance Response Physiology and Signal Transduction, Curr. Opin. Plant Biol., 1998, vol. 1, pp. 305–310.

    Google Scholar 

  20. Heo, W.D., Lee, S.H., Kim, V.C., Kim, J.C., Chung, W.S., Chun, H.J., Lee, K.J., Park, C.Y., Choi, J.Y., and Cho, M.J., Involvement of Specific Calmodulin Isoforms in Salicylic Acid-Independent Activation of Plant Disease Resistance Responses, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 766–771.

    Google Scholar 

  21. Ligterink, W., Kroj, T., Nieden, U., Hirt, H., and Scheel, D., Receptor-Mediated Activation of a MAP Kinase in Pathogen Defense of Plants, Science, 1997, vol. 276, pp. 2054–2057.

    Google Scholar 

  22. Romeis, T., Piedras, P., Zhang, S., Klessig, D.F., Hirt, H., and Jones, J.D.G., Rapid Avr9-and Cf-9-Dependent Activation of MAP Kinases in Tobacco Cell Cultures and Leaves: Convergence of Resistance Gene, Elicitor, Wound, and Salicylate Responses, Plant Cell, 1999, vol. 11, pp. 273–287.

    Google Scholar 

  23. Lamb, C. and Dixon, R.A., The Oxidative Burst in Plant Disease Resistance, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, pp. 251–275.

    Google Scholar 

  24. McDowell, J.M. and Dangl, J.L., Signal Transduction in the Plant Immunity Response, Trends Biochem. Sci., 2000, vol. 25, pp. 79–82.

    Google Scholar 

  25. Malamy, J., Carr, J.P., Klessig, D.F., and Raskin, I., Salicylic Acid: A Likely Endogenous Signal in the Resistance Response of Tobacco to Viral Infection, Science, 1990, vol. 250, pp. 1002–1004.

    Google Scholar 

  26. Gaffney, T., Friedrich, L., Vernooij, B., and Negrotto, D., Requirement of Salicylic Acid for the Induction of Systemic Acquired Resistance, Science, 1993, vol. 261, pp. 754–756.

    Google Scholar 

  27. Delaney, T., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessmann, H., Ward, E., and Ryals, J., A Central Role of Salicylic Acid in Plant Disease Resistance, Science, 1994, vol. 266, pp. 1247–1250.

    Google Scholar 

  28. Kachroo, P., Yoshioka, K., Shah, J., Dooner, K.D., and Klessig, D.F., Resistance to Turnip Crinkle Virus in Arabidopsis Is Regulated by Two Host Genes and Is Salicylic Dependent but NPR1, Ethylene, and Jasmonate Independent, Plant Cell, 2000, vol. 12, pp. 677–690.

    Google Scholar 

  29. Nawrath, C. and Metraux, J.P., Salicylic Acid Induction-Deficient Mutants of Arabidopsis Express PR-2 and PR-5 and Accumulate High Levels of Camalexin after Pathogen Inoculation, Plant Cell, 1999, vol. 11, pp. 1393–1404.

    Google Scholar 

  30. Chen, Z., Silva, H., and Klessig, D.F., Active Oxygen Species in the Induction of Plant Systemic Acquired Resistance by Salicylic Acid, Science, 1993, vol. 262, pp. 1883–1886.

    Google Scholar 

  31. Du, H. and Klessig, D.F., Identification of a Soluble, High-Affinity Salicylic Acid-Binding Protein in Tobacco, Plant Physiol., 1997, vol. 113, pp. 1319–1327.

    Google Scholar 

  32. Yu, D., Liu, Y., Fan, B., Klessig, D.F., and Chen, Z., Is the High Basal Level of Salicylic Acid Important for Disease Resistance in Potato? Plant Physiol., 1997, vol. 115, pp. 343–349.

    Google Scholar 

  33. Zhang, S. and Klessig, D.F., Salicylic Acid Activates a 48 kD MAP Kinase in Tobacco, Plant Cell, 1997, vol. 9, pp. 809–824.

    Google Scholar 

  34. Cao, H., Bowling, S.A., Gordon, A.S., and Dong, X., Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance, Plant Cell, 1994, vol. 6, pp. 1583–1592.

    Google Scholar 

  35. Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X., The Arabidopsis NPR1 Gene That Controls Systemic Acquired Resistance Encodes a Novel Protein Containing Ankyrin Repeats, Cell, 1997, vol. 88, pp. 57–63.

    Google Scholar 

  36. Ryals, J., Weymann, K., Lawton, K., Friedrich, L., Ellis, D., Steiner, J.-Y., Johnson, J., Delaney, T.P., Jesse, T., Vos, P., and Uknes, S., The Arabidopsis NIM1 Protein Shows Homology to the Mammalian Transcription Factor Inhibitor IB, Plant Cell, 1997, vol. 9, pp. 425–439.

    Google Scholar 

  37. Dong, X., Salicylic Acid, Jasmonic Acid, Ethylene, and Disease Resistance in Plants, Curr. Opin. Plant Biol., 1998, vol. 1, pp. 316–323.

    Google Scholar 

  38. Dangl, J.L. and Jones, J.D.G., Plant Pathogens and Integrated Defense Responses to Infection, Nature, 2001, vol. 411, pp. 826–833.

    Google Scholar 

  39. Proskuryakov, S.Ya., Konoplyannikov, A.G., Ivannikov, A.I., and Skvortsov, V.G., Biology of Nitric Oxide, Usp. Sovrem. Biol., 1999, vol. 119, pp. 380–395.

    Google Scholar 

  40. Hufton, C.A., Besford, R.T., and Wellburn, R.A., Effects of NO (+NO2) Pollution on Growth, Nitrate Reductase Activities and Associated Protein Contents in Glasshouse Lettuce Grown Hydroponically in Winter with CO2 Enrichment, New Phytol., 1996, vol. 133, pp. 495–501.

    Google Scholar 

  41. Wink, D.A. and Mitchell, J.B., Chemical Biology of Nitric Oxide: Insights into Regulatory, Cytotoxic, and Cytoprotective Mechanisms of Nitric Oxide, Free Radical Biol. Med., 1998, vol. 25, pp. 434–456.

    Google Scholar 

  42. Noritake, T., Kawakita, K., and Doke, N., Nitric Oxide Induces Phytoalexin Accumulation in Potato Tuber Tissue, Plant Cell Physiol., 1996, vol. 37, pp. 113–116.

    Google Scholar 

  43. Cooney, R.V., Harwood, P.J., Custer, L.J., and Franke, A.A., Light-Mediated Conversion of Nitrogen Dioxide to Nitric Oxide by Carotenoids, Environ. Health Perspect., 1994, vol. 102, pp. 460–462.

    Google Scholar 

  44. Wildt, J., Kley, D., Rockel, A., Rockel, P., and Segschneider, H., Emission of NO from Higher Plant Species, J. Geophys. Res., 1997, vol. 102, pp. 5919–5927.

    Google Scholar 

  45. Cueto, M., Fernandez-Perera, O., Martin, R., Bentura, M.L., Rodrigo, J., Lamas, S., and Golvano, M.P., Presence of Nitric Oxide Synthase Activity in Roots and Nodules of Lupinus albus, FEBS Lett., 1996, vol. 398, pp. 159–164.

    Google Scholar 

  46. Durner, J., Wendehenne, D., and Klessig, D.F., Defense Gene Induction in Tobacco by Nitric Oxide, Cyclic GMP and Cyclic ADP Ribose, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 10328–10333.

    Google Scholar 

  47. Delledonne, M., Xia, Y., Dixon, R., and Lamb, C., Nitric Oxide Signal Functions in Plant Disease Resistance, Nature, 1998, vol. 394, pp. 585–588.

    Google Scholar 

  48. Durner, J. and Klessig, D.F., Nitric Oxide as a Signal in Plants, Curr. Opin. Plant Biol., 1999, vol. 2, pp. 369–374.

    Google Scholar 

  49. Jaffrey, S.R. and Snyder, S.H., PIN: An Associated Protein Inhibitor of Neuronal Nitric Oxide Synthase, Science, 1996, vol. 274, pp. 774–777.

    Google Scholar 

  50. Bowler, C., Neuhaus, G., Yamagata, H., and Chua, N.H., Cyclic GMP and Calcium Mediate Phytochrome Phototransduction, Cell, 1994, vol. 77, pp. 73–81.

    Google Scholar 

  51. Reggiani, R., Alteration of Levels of Cyclic Nucleotides in Response to Anaerobiosis in Rice Seedlings, Plant Cell Physiol., 1997, vol. 38, pp. 740–742.

    Google Scholar 

  52. Leckie, C.P., McAinsh, M.R., Allen, G.J., Sanders, D., and Hetherington, A.M., Abscisic Acid-Induced Stomatal Closure Mediated by Cyclic ADP-Ribose, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 15837–15842.

    Google Scholar 

  53. Durner, J., Shah, J., and Klessig, D.F., Salicylic Acid and Disease Resistance in Plants, Trends Plant Sci., 1997, vol. 2, pp. 266–274.

    Google Scholar 

  54. Arredondo-Peter, R., Hargrove, M.S., Moran, J.F., Sarath, G., and Klucas, R.V., Plant Hemoglobins-Update on Biochemistry, Plant Physiol., 1998, vol. 118, pp. 1121–1125.

    Google Scholar 

  55. Squadrito, G.L. and Pryor, W.A., Oxidative Chemistry of Nitric Oxide: The Roles of Superoxide, Peroxynitrite, and Carbon Dioxide, Free Radical. Biol. Med., 1998, vol. 25, pp. 392–403.

    Google Scholar 

  56. Shrirasu, K., Nakajima, H., Rajasekhar, V.K., Dixon, R.A., and Lamb, C., Salicylic Acid Potentiates an Agonist-Dependent Control That Amplifies Pathogen Signals in the Activation of Defense Mechanisms, Plant Cell, 1997, vol. 9, pp. 261–270.

    Google Scholar 

  57. Van Camp, W., van Montagu, M., and Inze, D., H2O2 and NO: Redox Signals in Disease Resistance, Trends Plant Sci., 1998, vol. 3, pp. 330–334.

    Google Scholar 

  58. Klepper, L., NO Evolution by Soybean Leaves Treated with Salicylic Acid and Selected Derivatives, Pest Biochem. Physiol., 1991, vol. 39, pp. 43–48.

    Google Scholar 

  59. Stamler, J., Redox Signaling: Nitrosylation and Related Target Interactions of Nitric Oxide, Cell, 1994, vol. 78, pp. 931–936.

    Google Scholar 

  60. Sanz, A., Moreno, J.I., and Castresana, C., PIOX, a New Pathogen-Induced Oxygenase with Homology to Animal Cyclooxygenase, Plant Cell, 1998, vol. 10, pp. 1523–1537.

    Google Scholar 

  61. Ecker, J.R., The Ethylene Signal Transduction Pathway in Plants, Science, 1995, vol. 268, pp. 667–675.

    Google Scholar 

  62. Thomma, B.P., Eggermont, K., Penninckx, I.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P., and Broekaert, W.F., Separate Jasmonate-Dependent and Salicylate-Dependent Defense-Response Pathways in Arabidopsis Are Essential for Resistance to Distinct Microbial Pathogens, Proc. Natl. Acad. Sci. USA, 1998, vol. 95, pp. 15107–15111.

    Google Scholar 

  63. Nojiri, H., Sugimori, M., Yamane, H., Nishimura, Y., Yamada, A., Shibuya, N., Kodama, O., Murofushi, N., and Omori, T., Involvement of Jasmonic Acid in Elicitor-Induced Phytoalexin Production in Suspension-Cultured Rice Cells, Plant Physiol., 1996, vol. 110, pp. 387–392.

    Google Scholar 

  64. Farmer, E.E. and Ryan, C.A., Octadecanoid Precursors of Jasmonic Acid Activate the Synthesis of Wound-Inducible Proteinase Inhibitors, Plant Cell, 1992, vol. 4, pp. 129–134.

    Google Scholar 

  65. Van Wees, S.C.M., Luijendijk, M., Smoorenburg, I., and Pieterse, C.M.J., Rhizobacteria-Mediated Induced Systemic Resistance (ISR) in Arabidopsis Is Not Associated with a Direct Effect on Known Defense-Genes but Stimulates the Expression of the Jasmonate-Inducible Gene Atvsp upon Challenge, Plant Mol. Biol., 1999, vol. 41, pp. 537–549.

    Google Scholar 

  66. Fidantsef, A.L., Stout, M.J., Thaler, J.S., Duffey, S.S., and Bostock, R.M., Signal Interactions in Pathogen and Insect Attack: Expression of Lipoxygenase, Proteinase Inhibitor II, and Pathogenesis-Related Protein P4 in the Tomato, Lycopersicon esculentum, Physiol. Mol. Plant Pathol., 1999, vol. 54, pp. 97–114.

    Google Scholar 

  67. Preston, C.A., Lewandowski, C., Enyedi, A.J., and Baldwin, I.T., Tobacco Mosaic Virus Inoculation Inhibits Wound-Induced Jasmonic Acid-Mediated Responses within but Not between Plants, Planta, 1999, vol. 209, pp. 87–95.

    Google Scholar 

  68. Iris, A.M., Penninckx, B.P., Thomma, H.J., Buchala, A., Métraux, J.P., and Broekaert, W.F., Concomitant Activation of Jasmonate and Ethylene Response Pathways Is Required for Induction of a Plant Defensin Gene in Arabidopsis, Plant Cell, 1998, vol. 10, pp. 2103–2113.

    Google Scholar 

  69. Schweizer, P., Buchala, A., and Metraux, J.P., Gene Expression Patterns and Levels of Jasmonic Acid in Rice Treated with the Resistance Inducer 2,6-Dichloroisonicotinic Acid, Plant Physiol., 1997, vol. 115, pp. 61–70.

    Google Scholar 

  70. Perkovskaya, G.Yu., Beider, A.M., and Dmitriev, A.P., Onion Tolerance to Diseases Induced by Biogen Inducers, Biopolim. Kletka, 1991, vol. 7, pp. 91–94.

    Google Scholar 

  71. Gorlach, J., Benzothiabiazole, a Novel Class of Inducers of Systemic Acquired Resistance, Activates Gene Expression and Disease Resistance in Barley, Plant Cell, 1996, vol. 8, pp. 629–643.

    Google Scholar 

  72. Ozeretskovskaya, O.L., Problems of Specific Phytoimmunity, Fiziol. Rast. (Moscow), 2002, vol. 49, pp. 148–154 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmitriev, A.P. Signal Molecules for Plant Defense Responses to Biotic Stress. Russian Journal of Plant Physiology 50, 417–425 (2003). https://doi.org/10.1023/A:1023894825462

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023894825462

Navigation