Skip to main content
Log in

Field Evaluation of Herbivore-Induced Plant Volatiles as Attractants for Beneficial Insects: Methyl Salicylate and the Green Lacewing, Chrysopa nigricornis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Synthetic methyl salicylate (MeSA), a herbivore-induced plant volatile (HIPV), was demonstrated to be an attractant for the green lacewing, Chrysopa nigricornis, in two field experiments conducted in a Washington hop yard. Significantly greater numbers of C. nigricornis were trapped on MeSA-baited sticky cards (mean: 2.8 ± 0.4/card/week) than on unbaited cards (0.45 ± 0.15) during June–September. Cards baited with two other HIPVs, hexenyl acetate and dimethyl nonatriene, did not attract more C. nigricornis than did unbaited traps (0.30 ± 0.10, 0.44 ± 0.15, respectively). MeSA-baited Unitraps captured 1.9 ± 0.5 C. nigricornis/trap/week during July–August compared to 0.20 ± 0.20/trap/week in methyl eugenol-baited traps and 0.03 ± 0.03/trap/week in unbaited traps. The potential use of MeSA in enhancing C. nigricornis populations in Washington hop yards as an aid to conservation biological control of aphids and mites is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agnew, C. W., Sterling, W. L., and Dean, D. A. 1981. Notes on the Chrysopidae and Hemerobiidae of Eastern Texas with keys for their identification. Southwest. Entomol. 4(Suppl.):1–20.

    Google Scholar 

  • Agrawal, A. A., Janssen, A., Bruin, J., Posthumus, M. A., and Sabelis, M. W. 2002. An ecological cost of plant defence: Attractiveness of bitter cucumber plants to natural enemies of herbivores. Ecol. Lett. 5:377–385.

    Google Scholar 

  • Bolter, C. J., Dicke, M., van Loon, J. J. A., Visser, J. H., and Posthumus, M. A. 1997. Attraction of Colorado potato beetles to herbivore-damaged plants during herbivory and after its termination. J. Chem. Ecol. 23:1003–1023.

    Google Scholar 

  • Caltagirone, L. E. 1969. Terpenyl acetate bait attracts Chrysopa adults. J. Econ. Entomol. 62:1237.

    Google Scholar 

  • Campbell, C. A. M., Pettersson, J., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1993. Spring migration of Damson-Hop aphid, Phorodon humuli (Homoptera: Aphididae), and summer host plant-derived semiochemicals released on feeding. J. Chem. Ecol. 19:1569–1576.

    Google Scholar 

  • Dicke, M. and Sabelis, M. W. 1988. How plants obtain predatory mites as bodyguards. Neth. J. Zool. 38:148–165.

    Google Scholar 

  • Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., and Posthumus, M. A. 1990. Plant strategies of manipulating predator–prey interactions through allelochemicals: Prospects for application in pest control. J. Chem. Ecol. 16:3091–3118.

    Google Scholar 

  • Dicke, M., Takabayashi, J., Posthumus, M. A., Schutte, C., and Krips, O. E. 1998. Plant–phytoseiid interactions mediated by prey-induced plant volatiles: Variation in production of cues and variation in responses of predatory mites. Exp. Appl. Acarol. 22:311–333.

    Google Scholar 

  • Drukker, B., Bruin, J., and Sabelis, M. 2000. Anthocorid predators learn to associate herbivore-induced plant volatiles with presence or absence of prey. Physiol. Entomol. 25:260–265.

    Google Scholar 

  • Drukker, B., Scutareanu, P., and Sabelis, M. W. 1995. Do anthocorid predators respond to synomones from Psylla-infested pear trees under field conditions? Entomol. Exp. et Applicata 77:193–203.

    Google Scholar 

  • Flint, H. M., Slater, S. S.l., and Walters, S. 1979. Caryophyllene: An attractant for the green lacewing. Environ. Entomol. 8:1123–1125.

    Google Scholar 

  • Geervliet, J. B. F., Posthumus, M. A., Vet, L. E. M., and Dicke, M. 1997. Comparative analysis of headspace volatiles from different caterpillar-infested and uninfested food plants of Pieris species. J. Chem. Ecol. 23:2935–2954.

    Google Scholar 

  • Glinwood, R. and Pettersson, J. 2000. Host plant choice in Rhopalosiphum padi spring migrants and the role of olfaction in winter host leaving. Bull. Entomol. Res. 90:57–61.

    Google Scholar 

  • Hardie, J., Isaacs, R., Pickett, J. A., Wadhams, L. J., and Woodcock, C. M. 1994. Methyl salicylate and (–)-(1R,5S)-myrtenal are plant-derived repellents for black bean aphid, Aphis fabae Scop. (Homoptera: Aphididae). J. Chem. Ecol. 20:2847–2855.

    Google Scholar 

  • Hunter, M. D. 2002. A breath of fresh air: Beyond laboratory studies of plant volatile–natural enemy interactions. Agric. Forest Ent. 4:81–86.

    Google Scholar 

  • James, D. G. in preparation 2003. Synthetic herbivore-induced plant volatiles as attractants for beneficial insects.

  • James, D. G., Price, T. S., and Wright, L. C. 2003. Mites and aphids in Washington hops: Candidates for augmentative or conservation biological control? Proc. 1 st Int. Symp. Biol. Cont. Arthropods

  • James, D. G., Price, T. S., Wright, L. C., Coyle, J., and Perez, J. 2001. Mite abundance and phenology on commercial and escaped hops. Int. J. Acarol. 27:151–156.

    Google Scholar 

  • Kessler, A. and Baldwin, I. T. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144.

    Google Scholar 

  • Lluisa, J. and Penuelas, J. 2001. Emission of volatile organic compounds by apple trees under spider mite attack and attraction of predatory mites. Exp. Appl. Acarol. 25:65–77.

    Google Scholar 

  • Losel, P. M., Lindemann, M., Scherkenbeck, J., Maier, J., Engelhard, B., Campbell, C. A. M., Hardie, J., Pickett, J. A., Wadhams, L. J., and Elbert, A. 1996. The potential of semiochemicals for control of Phorodon humuli (Homoptera: Aphididae). Pesticide Sci. 48:293–303.

    Google Scholar 

  • Ninkovic, V., Ahmed, E., Glinwood, R., and Pettersson, J. 2003. Effects of two types of semiochemical on population development of the bird cherry oat aphid Rhopalosiphum padi in a barley crop. Agric. Forest Entomol. 5:27–33.

    Google Scholar 

  • Ockroy, M. L. B., Turlings, T. C. J., Edwards, P. J., Fritzsche-Hoballah, M. E., Ambrosetti, L., Bassetti, P., and Dorn, S. 2001. Response of natural populations of predators and parasitoids to artificially induced volatile emissions in maize plants (Zea mays L.). Agric. Forest Ent. 3:201–209.

    Google Scholar 

  • Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, T., and Nishioka, T. 2000b. Involvement of jasmonate and salicylate-related signalling pathway for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol. 41:391–398.

    Google Scholar 

  • Ozawa, R., Shimoda, T., Kawaguchi, M., Arimura, G., Horiuchi, J., Nishioka, T., and Takabayashi, J. 2000a. Lotus japonicus infested with herbivorous mites emits volatile compounds that attract predatory mites. J. Plant Res. 113:427–433.

    Google Scholar 

  • Pare, P. W. and Tumlinson, J. H. 1996. Plant volatile signals in response to herbivore feeding. Fla. Entomol. 19:93–103.

    Google Scholar 

  • Penny, N. D., Tauber, C. A., and De Leon, T. 2000. A new species of Chrysopa from western North America with a key to North American species (Neuroptera: Chrysopidae). Ann. Entomol. Soc. Am. 93:776–784.

    Google Scholar 

  • Pettersson, J., Pickett, J. A., Pye, B. J., Quiroz, A., Smart, L. E., Wadhams, L. J., and Woodcock, C. M. 1994. Winter host component reduces colonization by bird-cherry-oat aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae) and other aphids in cereal fields. J. Chem Ecol. 20:2565–2574.

    Google Scholar 

  • Rodriguez-Saona, C., Crafts-Brandner, S. J., Williams L III., and Pare, P. W. 2002. Lygus hesperus feeding and salivary gland extracts induce volatile emissions in plants. J. Chem. Ecol. 28:1733–1747.

    Google Scholar 

  • Sabelis, M. W., Janssen, A., Pallini, A., Venzon, M., Bruin, J., Drukker, B., and Scutareanu, P. 1999. Behavioural responses of predatory and herbivorous arthropods to induced plant volatiles: From evolutionary ecology to agricultural applications. pp. 269-298, in A. Agrawal, S. Tuzun, and E. Bent (Eds.). Induced Plant Defences Against Pathogens and Herbivores. The American Phytopathological Society, St. Paul, Minnesota.

    Google Scholar 

  • Sakan, T., Isoe, S., and Hyeon, S. B. 1970. The chemistry of attractants for Chrysopidae from Actinidia polygama Miq., pp. 237-247, in D. L. Wood, R. M. Silverstein, and M. Nakajima (Eds.). Control of Insect Behavior by Natural Products. Academic Press, New York.

    Google Scholar 

  • Scutareanu, P., Drukker, B., Bruin, J., Posthumus, M. A., and Sabelis, M. W. 1997. Volatiles from psylla-infested pear trees and their possible involvement in attraction of anthocorid predators. J. Chem. Ecol. 23:2241–2260.

    Google Scholar 

  • Shimoda, T., Takabayashi, J., Ashira, W., and Takafuji, A. 1997. Response of predatory insect, Scolothrips takahashi towards herbivore-induced plant volatiles under laboratory and field conditions. J. Chem. Ecol. 23:2033–2048.

    Google Scholar 

  • Shulaev, V., Silverman, P., and Raskin, I. 1997. Airborne signalling by methyl salicylate in plant pathogen resistance. Nature 385:718–721.

    Google Scholar 

  • Stowe, M. K., Turlings, T. C. J., Loughrin, J. H., Lewis, W. J., and Tumlinson, J. H. 1995. The chemistry of eavesdropping, alarm and deceit. Proc. Nat. Acad. Sci. USA 92:23-28

    Google Scholar 

  • Suda, D. Y. and Cunningham, R. T. 1970. Chrysopa basalis captured in plastic traps containing methyl eugenol. J. Econ. Entomol. 63:1706.

    Google Scholar 

  • Takabayashi, J. and Dicke, M. 1996. Plant–carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci. 1:109–113.

    Google Scholar 

  • Takabayashi, J., Dicke, M., and Posthumus, M. A. 1994. Volatile herbivore-induced terpenoids in plant–mite interactions: Variation caused by biotic and abiotic factors. J. Chem. Ecol. 20:1329–1354.

    Google Scholar 

  • Thaler, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688.

    Google Scholar 

  • Turlings, T. C. J., Tumlinson, J. H., and Lewis, W. J. 1990. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253.

    Google Scholar 

  • Turlings, T. C. J., Wackers, F. L., Vet, L. E. M., Tumlinson, J. H., and Lewis, W. J. 1993. Learning of host-finding cues by hymenopterous parasitoids, pp. 51-78, in D. R. Papaj and A. C. Lewis (Eds.). Insect Learning. Chapman and Hall, New York.

    Google Scholar 

  • Umeya, K. and Hirao, J. 1975. Attraction of the Jackfruit fly, Dacus umbrosus F. (Diptera: Tephritidae) and lacewing, Chrysopa sp. (Neuroptera: Chrysopidae) by lure traps baited with methyl eugenol and cue-lure in the Philippines. Appl. Entomol. Zool. 10:60–62.

    Google Scholar 

  • Van Emden, H. F., and Hagen, K. S. 1976. Olfactory reactions of the green lacewing, Chrysopa carnea, to tryptophan and certain breakdown products. Environ. Entomol. 5:469–473.

    Google Scholar 

  • Vet, L. E. M. and Dicke, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141–172.

    Google Scholar 

  • Zhu, J., Cosse, A. A., Obrycki, J. J., Boo, K. S., and Baker, T. C. 1999. Olfactory reactions of the twelve-spotted lady beetle, Coleomegilla maculata and the green lacewing, Chrysoperla carnea to semiochemicals released from their prey and host plants: Electroantennogram and behavioral responses. J. Chem. Ecol. 25:1163–1177.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

James, D.G. Field Evaluation of Herbivore-Induced Plant Volatiles as Attractants for Beneficial Insects: Methyl Salicylate and the Green Lacewing, Chrysopa nigricornis . J Chem Ecol 29, 1601–1609 (2003). https://doi.org/10.1023/A:1024270713493

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024270713493

Navigation