Skip to main content
Log in

Importance of Metastable States in Electrocatalytic Processes at Metal Surfaces in Aqueous Media

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Solid metals and their surfaces can trap or store energy; it appears, therefore, that, for any solid metal in aqueous media, there are two limiting types of surface electrochemistry, one relating to the equilibrated (low-energy) metal atoms, and the other, to the metastable (high-energy) metal atoms. With real metal surfaces, the low-energy state is usually dominant, but the metastable state behavior is often vital with regard to low coverage surface active site behavior. The most significant effects of surface metastability are that it lowers the oxidation potential of the atoms in this state to values within the double layer region and forms the basis of facile interfacial redox couples which often function as mediators in electrocatalytic processes. This rather novel approach was explored with regard to the electrocatalytic behavior of copper in base; the applicability of the approach to the three Group 11 metals (Cu, Ag, and Au) was illustrated, and its relevance to the use of platinum in fuel cell electrocatalysis was outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hoare, J.P., The Electrochemistry of Oxygen, New York: Wiley, 1968, p. 13.

    Google Scholar 

  2. Pletcher, D., J. Appl. Electrochem., 1984, vol. 14, p. 403.

    Google Scholar 

  3. Burke, L.D., Electrochim. Acta, 1994, vol. 39, p. 1841.

    Google Scholar 

  4. Burke, L.D. and Nugent, P.F., Gold Bull., 1998, vol. 31, p. 39.

    Google Scholar 

  5. Burke, L.D., Collins, J.A., and Murphy, M.A., J. Solid State Electrochem., 1999, vol. 4, p. 34.

    Google Scholar 

  6. Haruta, M., Yamada, M., Kobayashi, T., and Iijima, S., J. Catal., 1989, vol. 115, p. 301.

    Google Scholar 

  7. Bond, G.C. and Thompson, D.T., Catal. Rev.–Sci. Eng., 1999, vol. 41, p. 319.

    Google Scholar 

  8. Taylor, H.S., Proc. Roy. Soc. Lond. A, 1925, vol. 108, p. 105.

    Google Scholar 

  9. Burke, L.D., Ahern, A.J., and O'Mullane, A.P., Gold Bull., 2002, vol. 35, p. 3.

    Google Scholar 

  10. Suryanarayana, C., Materials Science and Technology: A Comprehensive Treatment, Cahn, R.W., Haasen, P., and Kramer, E.J., Eds., Weinheim: VCH, 1991, vol. 15, p. 57.

    Google Scholar 

  11. Somorjai, G.A., Chem. Rev., 1996, vol. 96, p. 1223.

    Google Scholar 

  12. Spencer, M.S., Nature, 1986, vol. 323, p. 685.

    Google Scholar 

  13. Kornyshev, A.A. and Sumetskii, M., Electrochemical Nanotechnology, Lorenz, W.J. and Pleith, W., Eds., New York: Wiley–VCH, 1998, p. 45.

    Google Scholar 

  14. Savinova, E.R., Kraft, P., Pettinger, B., and Doblhofer, K., J. Electroanal. Chem., 1997, vol. 430, p. 47.

    Google Scholar 

  15. Shaikhutdinov, Sh.K., Savinova, E.R., Scheybal, A., Doblhofer, K., and Schlögl, R., J. Electroanal. Chem., 2001, vol. 500, p. 208.

    Google Scholar 

  16. Savinova, E.R., Zemlyanov, D., Pettinger, B., Scheybal, A., Schlögl, R., and Doblhofer, K., Electrochim. Acta, 2000, vol. 46, p. 175.

    Google Scholar 

  17. Burke, L.D. and Nugent, P.F., Electrochim. Acta, 1997, vol. 42, p. 399.

    Google Scholar 

  18. Hori, Y., Murata, A., and Takahashi, R., J. Chem. Soc. Faraday Trans., 1989, vol. 85, p. 2309.

    Google Scholar 

  19. Jermann, B. and Augustynski, J., Electrochim. Acta, 1994, vol. 39, p. 1891.

    Google Scholar 

  20. Burke, L.D. and Hurley, L.M., Electrochim. Acta, 1999, vol. 44, p. 3451.

    Google Scholar 

  21. Reed-Hill, R.E. and Abbaschian, A., in Physical Metallurgical Principles, Boston: PWS-Kent, 1992, 3rd ed., p. 227.

    Google Scholar 

  22. Buckley, D.N. and Ahmed, S., Electrochem. Solid State Lett., 2003, vol. 6, p. C33.

    Google Scholar 

  23. Andricacos, P.C., The Electrochem. Soc. Interface, 1999, vol. 8, p. 32.

    Google Scholar 

  24. Taiphaisitpongs, P., Cao, Y., and West, A.C., J. Electrochem. Soc., 2001, vol. 148, p. C492.

    Google Scholar 

  25. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Media, Oxford: Pergamon, 1966, p. 384.

    Google Scholar 

  26. Paatsch, W., Ber. Bunsen-Ges. Phys. Chem., 1977, vol. 81, p. 645.

    Google Scholar 

  27. Burke, L.D. and Collins, J.A., J. Appl. Electrochem., 1999, vol. 29, p. 1427.

    Google Scholar 

  28. Härtinger, S., Pettinger, B., and Doblhofer, K., J. Electroanal. Chem., 1995, vol. 29, p. 1427.

    Google Scholar 

  29. Marichev, V.A., Electrochim. Acta, 1996, vol. 41, p. 2551.

    Google Scholar 

  30. Burke, L.D. and O'Mullane, A.P., J. Solid State Electrochem., 2000, vol. 4, p. 285.

    Google Scholar 

  31. Droog, J.M.M., Alderliesten, C.A., Alderliesten, P.T., and Bootsma, G.A., J. Electroanal. Chem., 1980, vol. 111, p. 61.

    Google Scholar 

  32. Strehblow, H., Maurice, V., and Marcus, P., Electrochim. Acta, 2001, vol. 46, p. 3755.

    Google Scholar 

  33. Burke, L.D. and Murphy, M.A., J. Solid State Electrochem., 2001, vol. 5, p. 43.

    Google Scholar 

  34. Ibl, N., Advances in Electrochemistry and Electrochemical Engineering, Tobias, C.W., Ed., New York: Interscience, 1962, vol. 2, p. 49.

    Google Scholar 

  35. Ahern, A.J., Nagle, L.C., and Burke, L.D., J. Solid State Electrochem., 2002, vol. 6, p. 451.

    Google Scholar 

  36. Burke, L.D. and O'Dwyer, K.J., Electrochim. Acta, 1991, vol. 36, p. 1937.

    Google Scholar 

  37. Burke, L.D. and Healy, J.F., J. Electroanal. Chem., 1981, vol. 124, p. 327.

    Google Scholar 

  38. Henglein, A., Ber. Bunsen-Ges. Phys. Chem., 1997, vol. 101, p. 1562.

    Google Scholar 

  39. Jaycock, M. J. and Parfitt, G.D., Chemistry of Interfaces, Chichester: Horwood, 1981, p. 136.

    Google Scholar 

  40. Parsons, R. and VanderNoot, T., J. Electroanal. Chem., 1988, vol. 257, p. 9.

    Google Scholar 

  41. Burke, L.D. and Hurley, L.M., J. Solid State Electrochem., 2000, vol. 4, p. 353.

    Google Scholar 

  42. Burke, L.D. and Ahern, A.J., J. Solid State Electrochem., 2001, vol. 5, p. 553.

    Google Scholar 

  43. Parmigiani, F., Kay, E., and Bagus, P.S., J. Electron Spectrosc. Relat. Phenom., 1990, vol. 50, p. 39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burke, L.D., Kinsella, L.M. & O'Connell, A.M. Importance of Metastable States in Electrocatalytic Processes at Metal Surfaces in Aqueous Media. Russian Journal of Electrochemistry 40, 1105–1114 (2004). https://doi.org/10.1023/B:RUEL.0000048641.28024.0d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUEL.0000048641.28024.0d

Navigation