Skip to main content

Advertisement

Log in

Nutrition and health in honey bees

Nutrition et santé des abeilles

Ernährung und Gesundheit bei Honigbienen

  • Review Article
  • Published:
Apidologie Aims and scope Submit manuscript

Abstract

Adequate nutrition supports the development of healthy honey bee colonies. We give an overview of the nutritional demands of honey bee workers at three levels: (1) colony nutrition with the possibility of supplementation of carbohydrates and proteins; (2) adult nutrition and (3) larval nutrition. Larvae are especially dependant on protein and brood production is strongly affected by shortages of this nutrient. The number of larvae reared may be reduced to maintain the quality of remaining offspring. The quality of developing workers also suffers under conditions of larval starvation, leading to slightly affected workers. Larval starvation, alone or in combination with other stressors, can weaken colonies. The potential of different diets to meet nutritional requirements or to improve survival or brood production is outlined. We discuss nutrition-related risks to honey bee colonies such as starvation, monocultures, genetically modified crops and pesticides in pollen and nectar.

Zusammenfassung

Eine ausgewogene Ernährung mit ausreichend Proteinen, Kohlenhydraten, Fetten, Vitaminen und Mineralstoffen ist notwendig für das Überleben eines Bienenvolkes, die Entwicklung der Arbeiterinnen und die Aufzucht von Brut. Im Superorganismus Honigbiene sind diese drei Ebenen der Ernährung eng miteinander verknüpft (Abb. 1), und Defizite in einer dieser Ebenen wirken sich negativ auf die anderen aus.

Für das Überleben des Volkes sind vor allem Kohlenhydrate notwendig. Eine Arbeiterin benötigt pro Tag etwa 4 mg verwertbaren Zucker. Allerdings sind nicht alle Zucker verwertbar, einige sind für Bienen giftig. Ebenfalls giftig ist Hydroxymethylfurfural (HMF) das sich bei thermischer Zersetzung und langer Lagerung aus Zuckern bildet. Der HMF Gehalt erhältlicher Maissirupe liegt zwischen 3,1 und 28,7 ppm, kann aber durch Lagerung bei zu hohen Temperaturen drastisch ansteigen und die Mortalität von Bienen erhöhen.

Pollen ist die natürliche Proteinquelle von Bienen. Daraus bilden Ammenbienen ein proteinreiches Futter für die Brut. Ist nicht genügend Pollen vorhanden, reduziert das Bienenvolk die Zahl der produzierten Larven durch Kannibalismus. Ein Mangel von Protein in der Larval-oder Adultnahrung führt zur reduzierten Entwicklung der Brutfutterdrüsen und Ovarien sowie einer kürzeren Lebensdauer. Proteinmangel während der Larvalernährung führt darüber hinaus zu beeinträchtigter Thoraxentwicklung, Flugleistung und Verhaltensänderungen. Bei Pollenmangel können dem Bienenvolk andere Proteinquellen angeboten werden, Tabelle I zeigt die pro Tag konsumierten Mengen unterschiedlicher Diäten, deren Bestandteile, Proteingehalt und die Größe der untersuchten Einheit. Ein Proteingehalt zwischen 23 und 30 % hat sich als zur Brutaufzucht geeignet erwiesen. Unseren Berechnungen zufolge erhält ein Volk mit jedem konsumierten Gramm etwa die Menge Protein die 4 Larven bis zur Verdeckelung benötigen.

Pollen liefert ebenfalls Fette, die vor allem in der Larvalentwicklung benötigt werden. Honigbienen können Sterole nicht selbst herstellen, und verfüttern überwiegend 24-Methylen-Cholesterin an die Brut. Das tun sie, unter Verwendung von Körperreserven auch dann, wenn kein Cholesterin in der Nahrung vorhanden ist.

Arbeiterinnen (oder symbiontische Mikroorganismen) sind in der Lage Vitamin C zu synthetisieren. Pyridoxin, ein Vitamin aus dem B-Komplex, ist hingegen notwendig für erfolgreiche Brutaufzucht. Obwohl fettlösliche Vitamine nicht essentiell für die Honigbiene sind, steigert ihre Anwesenheit in der Diät die Menge an produzierter Brut.

Neben dem Verhungern oder der erwähnten Mangelernährung stellen einseitige Ernährung durch Monokulturen, genetisch modifizierte Pflanzen oder vom Menschen oder der Pflanze produzierte Giftstoffe die mit der Nahrung eingetragen werden Gefahren für die Honigbiene dar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaux C., Ducloz F., Crauser D., Le Conte Y. (2010) Diet effects on honeybee immunocompetence, Biol. Lett., DOI:10.1098/rsbl.2009.0986.

  • Alqarni A.S. (2006) Influence of some protein diets on the longevity and some physiological conditions of honeybee Apis mellifera L. workers, J. Biol. Sci. 6, 734–737.

    CAS  Google Scholar 

  • Amdam G.V., Omholt S.W. (2002) The regulatory anatomy of honeybee lifespan, J. Theor. Biol. 216, 209–228.

    PubMed  Google Scholar 

  • Amdam G.V., Omholt S.W. (2003) The hive bee to forager transition in honeybee colonies: the double repressor hypothesis, J. Theor. Biol. 223, 451–464.

    PubMed  CAS  Google Scholar 

  • Amdam G.V., Hartfelder K., Norberg K., Hagen A., Omholt S.W. (2004) Altered physiology in worker honey bees (Hymenoptera: Apidae) infested with the mite Varroa destructor (Acari: Varroidae): a factor in colony loss during overwintering? J. Econ. Entomol. 97, 741–747.

    PubMed  Google Scholar 

  • Amdam G.V., Norberg K., Hagen A., Omholt S.W. (2003) Social exploitation of vitellogenin, Proc. Natl. Acad. Sci. 100, 1799–1802.

    PubMed  CAS  Google Scholar 

  • Anderson L.M., Dietz A. (1976) Pyridoxine requirement of the honey bee (Apis mellifera) for brood rearing, Apidologie 7, 67–84.

    CAS  Google Scholar 

  • Aupinel P., Fortini D., Dufour H., Tasei J.N., Michaud B., Odoux J.F., Pham-Delègue M.H. (2005) Improvement of artificial feeding in a standard in vitro method for rearing Apis mellifera larvae, Bull. Insect 58, 107–111.

    Google Scholar 

  • Avni D., Dag A., Shafir S. (2009) The effect of surface area of pollen patties fed to honey bee (Apis mellifera) colonies on their consumption, brood production and honey yields, J. Apic. Res. 48, 23–28.

    Google Scholar 

  • Babendreier D., Kalberer N., Romeis J., Fluri P., Bigler F. (2004) Pollen consumption in honey bee larvae: a step forward in the risk assessment of transgenic plants, Apidologie 35, 293–300.

    Google Scholar 

  • Barker R.J. (1977) Some carbohydrates found in pollen and pollen substitutes are toxic to honey bees, J. Nutr. 107, 1859–1862.

    PubMed  CAS  Google Scholar 

  • Barker R.J. (1990) Poisoning by plants, in: Morse R.A., Nowogrodzki R. (Eds.), Honey bee pests, predators, and diseases, Cornell University Press, Ithaca, N.Y. and London, pp. 306–328.

    Google Scholar 

  • Barker R.J., Lehner Y. (1974) Acceptance and sustenance value of naturally occurring sugars fed to newly emerged adult workers of honey bees (Apis mellifera L.), J. Exp. Zool. 187, 277–285.

    CAS  Google Scholar 

  • Barker R.J., Lehner Y. (1976) Galactose a sugar toxic to honey bees found in exudate of tulip flowers, Apidologie 7, 109–112.

    CAS  Google Scholar 

  • Barker R.J., Lehner Y. (1978) Laboratory comparison of high fructose corn syrup, grape syrup, honey, and sucrose syrup as maintenance food for caged honey bees, Apidologie 9, 111–116.

    Google Scholar 

  • Brodschneider R., Moosbeckhofer R., Crailsheim K. (2010) Surveys as a tool to record winter losses of honey bee colonies — a 2-year case study in Austria and South Tyrol, Tyrol, J. Apic. Res. 49, 23–30.

    Google Scholar 

  • Brodschneider R., Hrassnigg N., Vollmann J., Petz M., Riessberger-Gallé U., Crailsheim K. (2007) Liquid nutrition within a honeybee colony — who feeds? Apidologie 38, 492.

    Google Scholar 

  • Brodschneider R., Haidmayer C., Riessberger-Gallé U., Crailsheim K. (2009a) Protein uptake in honeybee colonies supplemented with two protein diets simultaneously, Apidologie 40, 662.

    Google Scholar 

  • Brodschneider R., Riessberger-Gallé U., Crailsheim K. (2009b) Flight performance of artificially reared honeybees (Apis mellifera), Apidologie 40, 441–449.

    Google Scholar 

  • Brodschneider R., Steiner D., Moder A., Vollmann J., Riessberger-Gallé U., Crailsheim K. (2009c) Synthetic larval diet produces lighter and smaller honeybees (Apis mellifera), Apidologie 40, 663–664.

    Google Scholar 

  • Campana B.J., Moeller F.E. (1977) Honey bees: preference for and nutritive value of pollen from five plant sources, J. Econ. Entomol. 70, 39–41.

    Google Scholar 

  • Cantrill R.C., Hepburn H.R., Warner S.J. (1981) Changes in lipid composition during sealed brood development of African worker honeybees, Comp. Biochem. Physiol. B 68, 351–353.

    Google Scholar 

  • Crailsheim K. (1986) Dependence of protein metabolism on age and season in the honeybee (Apis mellifica carnica Pollm), J. Insect Physiol. 32, 629–634.

    CAS  Google Scholar 

  • Crailsheim K. (1990) The protein balance of the honey bee worker, Apidologie 21, 417–429.

    CAS  Google Scholar 

  • Crailsheim K. (1991) Interadult feeding of jelly in honeybee (Apis mellifera L.) colonies, J. Comp. Physiol. B 161, 55–60.

    Google Scholar 

  • Crailsheim K. (1998) Trophallactic interactions in the adult honeybee (Apis mellifera L.), Apidologie 29, 97–112.

    Google Scholar 

  • Crailsheim K., Schneider L.H.W., Hrassnigg N., Bühlmann G., Brosch U., Gmeinbauer R., Schöffmann B. (1992) Pollen consumption and utilization in worker honeybees (Apis mellifera carnica): dependence on individual age and function, J. Insect Physiol. 38, 409–419.

    Google Scholar 

  • Cremonez T.M., de Jong D., Bitondi M.M.G. (1998) Quantification of hemolymph proteins as a fast method for testing protein diets for honey bees (Hymenoptera: Apidae), J. Econ. Entomol. 91, 1284–1289.

    CAS  Google Scholar 

  • Daly H.V., Danka R.G., Hoelmer K., Rinderer T.E., Buco S.M. (1995) Honey bee morphometrics: linearity of variables with respect to body size and classification tested with European worker bees reared by varying ratios of nurse bees, J. Apic. Res. 34, 129–145.

    Google Scholar 

  • DeGrandi-Hoffman G., Hagler J. (2000) The flow of incoming nectar through a honey bee (Apis mellifera L.) colony as revealed by a protein marker, Insectes Soc. 47, 302–306.

    Google Scholar 

  • DeGrandi-Hoffman G., Wardell G., Ahumada-Secura F., Rinderer T.E., Danka R., Pettis J. (2008) Comparisons of pollen substitute diets for honeybees: consumption rates by colonies and effects on brood and adult populations, J. Apic. Res. 47, 265–270.

    Google Scholar 

  • De Groot A.P. (1953) Protein and amino acid requirements of the honeybee (Apis mellifica L.), Physiol. Comp. Oecol. 3, 197–285.

    Google Scholar 

  • De Jong D., da Silva E.J., Kevan P.G., Atkinson J.L. (2009) Pollen substitutes increase honey bee haemolymph protein levels as much as or more than does pollen, J. Apic. Res. 48, 34–37.

    Google Scholar 

  • Decourtye A., Mader E., Desneux N. (2010) Landscape scale enhancement of floral resources for honey bees in agro-ecosystems, Apidologie 41, 264–277.

    Google Scholar 

  • Dietz A., Stevenson H.R. (1980) Influence of long term storage on the nutritional value of frozen pollen for brood rearing of honey bees, Apidologie 11, 143–151.

    Google Scholar 

  • Dimou M., Thrasyvoulou A. (2009) Pollen analysis of honeybee rectum as a method to record the bee pollen flora of an area, Apidologie 40, 124–133.

    Google Scholar 

  • Doner L.W. (1977) The sugars of honey — a review, J. Sci. Food Agric. 28, 443–456.

    PubMed  CAS  Google Scholar 

  • Doull K.M. (1980a) Relationships between consumption of a pollen supplement, honey production, and broodrearing in colonies of honeybees Apis mellifera L. I, Apidologie 11, 361–365.

    Google Scholar 

  • Doull K.M. (1980b) Relationships between consumption of a pollen supplement, honey production and broodrearing in colonies of honeybees Apis mellifera L. II, Apidologie 11, 367–374.

    Google Scholar 

  • Dustmann J.H., von der Ohe W. (1988) Einfluß von Kälteeinbrüchen auf die Frühjahrsentwinklung von Bienenvölkern (Apis mellifera L), Apidologie 19, 245–254.

    Google Scholar 

  • Eischen F.A., Rothenbuhler W.C., Kulincevic J.M. (1982) Length of life and dry weight of worker honeybees reared in colonies with different worker-larva ratios, J. Apic. Res. 21, 19–25.

    Google Scholar 

  • Ellis A.M., Hayes G.W. Jr (2009) An evaluation of fresh versus fermented diets for honey bees (Apis mellifera), J. Apic. Res. 48, 215–216.

    Google Scholar 

  • Free J.B. (1965) The behaviour of honeybee foragers when their colonies are fed sugar syrup, J. Apic. Res. 4, 85–88.

    Google Scholar 

  • Forsgren E., Vásquez A., Olofsson T.C., Fries I. (2010) Novel lactic acid bacteria inhibiting Paenibacillus larvae in honey bee larvae, Apidologie 41, 99–108.

    Google Scholar 

  • Gilliam M. (1997) Identification and roles of non-pathogenic microflora associated with honey bees, FEMS Microbiol. Lett. 155, 1–10.

    CAS  Google Scholar 

  • Girolami V., Mazzon L., Squartini A., Mori N., Marzaro M., Di Bernardo A., Greatti M., Giorio C., Tapparo A. (2009) Translocation of neonicotinoid insecticides from coated seeds to seedling guttation drops: a novel way of intoxication for bees, J. Econ. Entomol. 102, 1808–1815.

    PubMed  CAS  Google Scholar 

  • Hagedorn H.H., Moeller F.E. (1968) Effect of the age of pollen used in pollen supplements on their nutritive value for the honeybee. I. Effect on thoracic weight, development of hypopharyngeal glands, and brood rearing, J. Apic. Res. 7, 89–95.

    Google Scholar 

  • Haydak M.H. (1935) Brood rearing by honeybees confined to a pure carbohydrate diet, J. Econ. Entomol. 28, 657–660.

    CAS  Google Scholar 

  • Haydak M.H. (1970) Honey bee nutrition, Ann. Rev. Entomol. 15, 143–156.

    Google Scholar 

  • Herbert E.W. (1980) Effect of diet on the rate of brood rearing by naturally and instrumentally inseminated queens, Apidologie 11, 57–62.

    Google Scholar 

  • Herbert E.W., Shimanuki H. (1977) Brood-rearing capability of caged honeybees fed synthetic diets, J. Apic. Res. 15, 150–153.

    Google Scholar 

  • Herbert E.W., Shimanuki H. (1978a) Chemical composition and nutritive value of bee-collected and bee-stored pollen, Apidologie 9, 33–40.

    Google Scholar 

  • Herbert E.W., Shimanuki H. (1978b) Mineral requirements for brood-rearing by honey bees fed a synthetic diet, J. Apic. Res. 17, 118–122.

    CAS  Google Scholar 

  • Herbert E.W., Shimanuki H. (1978c) Effect of fat soluble vitamins on the brood rearing capabilities of honey bees fed a synthetic diet, Ann. Entomol. Soc. Am. 71, 689–691.

    Google Scholar 

  • Herbert E.W., Shimanuki H. (1982) Effect of population density and available diet on the rate of brood rearing by honey bees offered a pollen substitute, Apidologie 13, 21–28.

    Google Scholar 

  • Herbert E.W., Bickley W.E., Shimanuki H. (1970) The brood-rearing capability of caged honey bees fed dandelion and mixed pollen diets, J. Econ. Entomol. 63, 215–218.

    Google Scholar 

  • Herbert E.W., Shimanuki H. Caron D. (1977) Optimum protein levels required by honey bees (Hymenoptera, Apidae) to initiate and maintain brood rearing, Apidologie 8, 141–146.

    CAS  Google Scholar 

  • Herbert E.W., Shimanuki H., Shasha B.S. (1980a) Brood rearing and food consumption by honeybee colonies fed pollen substitutes supplemented with starch encapsulated pollen extracts, J. Apic. Res. 19, 115–118.

    Google Scholar 

  • Herbert E.W. Jr., Svoboda J.A., Thompson M.J., Shimanuki H. (1980b) Sterol utilization in honey bees fed a synthetic diet: Effects on brood rearing, J. Insect Physiol. 26, 287–289.

    CAS  Google Scholar 

  • Herbert E.W., Sylvester H.A., Vandenberg J.D., Shimanuki H. (1988) Influence of nutritional stress and the age of adults on the morphometrics of honey bees (Apis mellifera L.), Apidologie 19, 221–230. 26, 287–289.

    Google Scholar 

  • Herbert E.W., Vanderslice J.T., Higgs D.J. (1985) Effect of dietary vitamin C levels on the rate of brood production of freeflying and confined colonies of honey bees, Apidologie 16, 385–394.

    CAS  Google Scholar 

  • Hersch M.I., Crewe R.M., Hepburn H.R., Thompson P.R., Savage N. (1978) Sequential development of glycolytic competence in muscles of worker honeybees, Comp. Biochem. Physiol. B 61, 427–431.

    Google Scholar 

  • Hoover S.E., Higo H.A., Winston M.L. (2006) Worker honey bee ovary development: seasonal variation and the influence of larval and adult nutrition, J. Comp. Physiol. B 176, 55–63.

    PubMed  Google Scholar 

  • Hopkins C.Y., Jevans A.W., Boch R. (1969) Occurence of octadeca-trans-2, cis-9, cis-12-trienoic acid in pollen attractive to the honey bee, Can. J. Biochem. Cell Biol. 47, 433–436.

    CAS  Google Scholar 

  • Hrassnigg N., Crailsheim K. (2005) Differences in drone and worker physiology in honeybees (Apis mellifera L.), Apidologie 36, 255–277.

    Google Scholar 

  • Hrassnigg N., Brodschneider R., Fleischmann P.H., Crailsheim K. (2005) Unlike nectar foragers, honeybee drones (Apis mellifera) are not able to utilize starch as fuel for flight, Apidologie 36, 547–557.

    Google Scholar 

  • Imdorf A., Rickli M., Kilchenmann V., Bogdanov S., Wille H. (1998) Nitrogen and mineral constituents of honey bee worker brood during pollen shortage, Apidologie 29, 315–325.

    Google Scholar 

  • Jachimowicz T., El Sherbiny G. (1975) Zur Problematik der Verwendung von Invertzucker für die Bienenfütterung (Problems of invert sugar as food for honeybees), Apidologie 6, 121–143.

    CAS  Google Scholar 

  • Jay S.C. (1964) Starvation studies of larval honey bees, Can. J. Zool. 42, 455–462.

    Google Scholar 

  • Johnson R.M., Ellis M.D., Mullin C.A., Frazier M. (2010) Pesticides and honey bee toxicity — U.S.A., Apidologie, 41, 312–331.

    CAS  Google Scholar 

  • Kralj J., Brockmann A., Fuchs S., Tautz, J. (2007) The parasitic mite Varroa destructor affects non-associative learning in honey bee foragers, Apis mellifera L., J. Comp. Physiol. A 193, 363–370.

    Google Scholar 

  • Kunert K., Crailsheim K. (1988) Seasonal changes in carbohydrate, lipid and protein content in emerging worker honeybees and their mortality, J. Apic. Res. 27, 13–21.

    CAS  Google Scholar 

  • LeBlanc B.W., Eggleston G., Sammataro D., Cornett C., Dufault R., Deeby T., Cyr E.S.T. (2009) Formation of hydroxymethylfurfural in domestic high-fructose corn syrup and its toxicity to the honey bee (Apis mellifera), J. Agric. Food Chem. 57, 7369–7376.

    PubMed  CAS  Google Scholar 

  • Loper G.M., Berdel R.L. (1980a) A nutritional bioassay of honeybee brood-rearing potential, Apidologie 11, 181–189.

    Google Scholar 

  • Loper G.M., Berdel R.L. (1980b) The effects of nine pollen diets on broodrearing of honeybees, Apidologie 11, 351–359.

    Google Scholar 

  • Malone L.A., Pham-Delègue M.-H. (2001) Effects of transgene products on honey bees (Apis mellifera) and bumblebees (Bombus sp.), Apidologie 32, 287–304.

    CAS  Google Scholar 

  • Malone L.A., Todd J.H., Burgess E.P.J., Christeller J.T. (2004) Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor, Apidologie 35, 655–664.

    CAS  Google Scholar 

  • Manning R., Rutkay A., Eaton L., Dell B. (2007) Lipid-enhanced pollen and lipid-reduced flour diets and their effect on the longevity of honey bees (Apis mellifera L.), Aust. J. Entomol. 46, 251–257.

    Google Scholar 

  • Mattila H.R., Otis G.W. (2006a) Influence of pollen diet in spring on development of honey bee (Hymenoptera: Apidae) colonies, J. Econ. Entomol. 99, 604–613.

    PubMed  CAS  Google Scholar 

  • Mattila H.R., Otis G.W. (2006b) The effects of pollen availability during larval development on the behaviour and physiology of spring-reared honey bee, Apidologie 37, 533–546.

    Google Scholar 

  • Maurizio A. (1954) Pollenernährung und Lebensvorgänge bei der Honigbiene (Apis mellifica L.), Landwirtsch. Jahrb. Schweiz 62, 115–182.

    Google Scholar 

  • Mayack C., Naug D. (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection, J. Invertebr. Pathol. 100, 185–188.

    PubMed  Google Scholar 

  • McLellan A.R. (1977) Honeybee colony weight as an index of honey production and nectar flow: A critical evaluation, J. Appl. Ecol. 14, 401–408.

    Google Scholar 

  • Moritz B., Crailsheim K. (1987) Physiology of protein digestion in the midgut of the honeybee (Apis mellifera L.), J. Insect Physiol. 33, 923–931.

    CAS  Google Scholar 

  • Naug D. (2009) Nutritional stress due to habitat loss may explain recent honeybee colony collapses, Biol. Conserv. 142, 2369–2372.

    Google Scholar 

  • Naug D., Gibbs A. (2009) Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae, Apidologie 40, 595–599.

    Google Scholar 

  • Neupane K.R., Thapa R.B. (2005) Alternative to offseason sugar supplement feeding of honeybees, J. Inst. Agric. Anim. Sci. 26, 77–81.

    Google Scholar 

  • Nicolson S.W. (2009) Water homeostasis in bees, with the emphasis on sociality, J. Exp. Biol. 212, 429–434.

    PubMed  Google Scholar 

  • Nicolson S.W., Human H. (2008) Bees get a head start on honey production, Biol. Lett. 4, 299–301.

    PubMed  Google Scholar 

  • Oldroyd B.P. (2007) What’s killing American honey bees? PLoS Biol. 5, e168.

    PubMed  Google Scholar 

  • Pankiw T., Sagili R.R., Metz B.N. (2008) Brood pheromone effects on colony protein supplement consumption and growth in the honey bee (Hymenoptera: Apidae) in a subtropical winter climate, J. Econ. Entomol. 101, 1749–1755.

    PubMed  Google Scholar 

  • Pernal S.F., Currie R.W. (2000) Pollen quality of fresh and 1-year-old single pollen diets for worker honey bees (Apis mellifera L.), Apidologie 31, 387–409.

    Google Scholar 

  • Ramirez-Romero R., Desneux N., Decourtye A., Chaffiol A., Pham-Delègue M.H. (2008) Does Cry1Ab protein affect learning performances of the honey bee Apis mellifera L. (Hymenoptera, Apidae)? Ecotoxicol. Environ. Saf. 70, 327–333.

    PubMed  CAS  Google Scholar 

  • Randolt K., Gimple O., Geissendörfer J., Reinders J., Prusko C., Mueller M.J., Albert S., Tautz J., Beier H. (2008) Immune-related proteins induced in the hemolymph after aseptic and septic injury differ in honey bee worker larvae and adults, Arch. Insect Biochem. Physiol. 69, 155–167.

    PubMed  CAS  Google Scholar 

  • Rembold H., Lackner B. (1981) Rearing of honeybee larvae in vitro: Effect of yeast extract on queen differentiation, J. Apic. Res. 20, 165–171.

    Google Scholar 

  • Rortais A., Arnold G., Halm M.-P., Touffet-Briens F. (2005) Modes of honeybees exposure to systemic insecticides: estimated amounts of contaminated pollen and nectar consumed by different categories of bees, Apidologie 36, 71–83.

    CAS  Google Scholar 

  • Roulston T.H., Cane J.H. (2000) Pollen nutritional content and digestibility for animals, Plant Syst. Evol. 222, 187–209.

    CAS  Google Scholar 

  • Roulston T.H., Cane J.H., Buchmann S.L. (2000) What governs protein content of pollen: pollinator preferences, pollen—pistil interactions, or phylogeny? Ecol. Monogr. 70, 617–643.

    Google Scholar 

  • Schmickl T., Crailsheim K. (2001) Cannibalism and early capping: strategies of honeybee colonies in times of experimental pollen shortages, J. Comp. Physiol. A 187, 541–547.

    PubMed  CAS  Google Scholar 

  • Schmickl T., Crailsheim K. (2002) How honeybees (Apis mellifera L.) change their broodcare behavior in response to non-foraging conditions and poor pollen conditions, Behav. Ecol. Sociobiol. 51, 415–425.

    Google Scholar 

  • Schmickl T., Crailsheim K. (2004) Inner nest homeostasis in a changing environment with special emphasis on honey bee brood nursing and pollen supply, Apidologie 35, 249–263.

    Google Scholar 

  • Schmidt J.O. (1984) Feeding preference of Apis mellifera L. (Hymenoptera: Apidae): individual versus mixed pollen species, J. Kans. Entomol. Soc. 57, 323–327.

    Google Scholar 

  • Schmidt J.O., Buchmann S.L. (1985) Pollen digestion and nitrogen-utilization by Apis mellifera L. (Hymenoptera, Apidae), Comp. Biochem. Physiol. A 82, 499–503.

    Google Scholar 

  • Schmidt J.O., Hanna A. (2006) Chemical nature of phagostimulants in pollen attractive to honeybees, J. Insect Physiol. 19, 521–532.

    Google Scholar 

  • Schmidt J.O., Thoenes S.C., Levin M.D. (1987) Survival of honey bees, Apis mellifera (Hymenoptera: Apidae), fed various pollen sources, J. Econ. Entomol. 80, 176–183.

    Google Scholar 

  • Schmidt L.S., Schmidt J.O., Rao H., Wang W., Xu L. (1995) Feeding preference of young worker honey bees (Hymenoptera: Apidae) fed rape, sesame, and sunflower pollen, J. Econ. Entomol. 88, 1591–1595.

    Google Scholar 

  • Schulz D.J., Huang Z.-Y., Robinson G.E. (1998) Effect of colony food shortage on the behavioral development of the honey bee, Apis mellifera, Behav. Ecol. Sociobiol. 42, 295–303.

    Google Scholar 

  • Seeley T.D. (1989) The honey bee colony as a superorganism, Am. Sci. 77, 546–553.

    Google Scholar 

  • Seeley T.D., Visscher P.K. (1985) Survival of honeybees in cold climates: the critical timing of colony growth and reproduction, Ecol. Entomol. 10, 81–88.

    Google Scholar 

  • Severson D.W., Erickson E.H. (1984) Honey bee (Hymenoptera: Apidae) colony performance in relation to supplemental carbohydrates, J. Econ. Entomol. 77, 1473–1478.

    CAS  Google Scholar 

  • Singh R.P., Singh P.N. (1996) Amino acid and lipid spectra of larvae of honey bee (Apis cerana Fabr) feeding on mustard pollen, Apidologie, 27, 21–28.

    CAS  Google Scholar 

  • Somerville D.C., Nicol H.I. (2006) Crude protein and amino acid composition of honey bee-collected pollen pellets from south-east Australia and a note on laboratory disparity, Aust. J. Exp. Agr. 46, 141–149.

    CAS  Google Scholar 

  • Standifer L.N., Moeller F.E., Kauffeld N.M., Herbert E.W., Shimanuki, H. (1977) Supplemental feeding of honey bee colonies, USDA Agr. Inform. Bull. No. 413, 8 p.

  • Staudenmayer T. (1939) Die Giftigkeit der Mannose für Bienen und andere Insekten, J. Comp. Physiol. A 26, 644–668.

    CAS  Google Scholar 

  • Svoboda J.A., Herbert, E.W., Thompson M.J. Feldlaufer M.F. (1986) Selective sterol transfer in the honey bee: Its significance and relationship to other hymenoptera, Lipids 21, 97–101.

    CAS  Google Scholar 

  • Svoboda J.A., Thompson M.J., Herbert E.W., Shortino T.J., Szczepanik-Vanleeuwen P.A. (1982) Utilization and metabolism of dietary sterols in the honey bee and the yellow fever mosquito, Lipids 17, 220–225.

    PubMed  CAS  Google Scholar 

  • Szymas B., Jedruszuk A. (2003) The influence of different diets on haemocytes of adult worker honey bees, Apis mellifera, Apidologie 34, 97–102.

    Google Scholar 

  • Tautz J., Maier S., Groh C., Rössler W., Brockmann A. (2003) Behavioral performance in adult honey bees is influenced by the temperature experienced during their pupal development, Proc. Natl. Acad. Sci. 100, 7343–7347.

    PubMed  CAS  Google Scholar 

  • Toth A.L., Robinson G.E. (2005) Worker nutrition and division of labour in honeybees, Anim. Behav. 69, 427–435.

    Google Scholar 

  • Toth A.L., Kantarovich S., Meisel A.F., Robinson G.E. (2005) Nutritional status influences socially regulated foraging ontogeny in honey bees, J. Exp. Biol. 208, 4641–4649.

    PubMed  Google Scholar 

  • van der Steen J. (2007) Effect of a home-made pollen substitute on honey bee colony development, J. Apic. Res. 46, 114–119.

    Google Scholar 

  • vanEngelsdorp D., Evans J.D., Saegermann C., Mullin C., Haubrugge E., Nguyen B.K., Frazier M., Frazier J., Cox-Foster D., Chen Y., Underwood R., Tarpy D.R., Pettis J.S. (2009) Colony Collapse Disorder: a descriptive study, PLoS ONE 4, e6481.

    PubMed  Google Scholar 

  • vanEngelsdorp D., Hayes J., Underwood R.M., Pettis J.S. (2010) A survey of honey bee colony losses in the United States, fall 2008 to spring 2009, J. Apic. Res. 49, 7–14.

    Google Scholar 

  • Vásquez A., Olofsson T.C. (2009) The lactic acid bacteria involved in the production of bee pollen and bee bread, J. Apic. Res. 48, 189–195.

    Google Scholar 

  • Wille H., Wille M., Kilchenmann V., Imdorf A., Bühlmann G. (1985) Pollenernte und Massenwechsel von drei Apis mellifera-Völkern auf demselben Bienenstand in zwei aufeinanderfolgenden Jahren, Rev. Suisse Zool. 92, 897–914.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Brodschneider.

Additional information

Manuscript editor: Yves Le Conte

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodschneider, R., Crailsheim, K. Nutrition and health in honey bees. Apidologie 41, 278–294 (2010). https://doi.org/10.1051/apido/2010012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/apido/2010012

Navigation