Skip to main content

Advertisement

Log in

Eutrophication of freshwater and coastal marine ecosystems a global problem

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Goal, Scope and Background

Humans now strongly influence almost every major aquatic ecosystem, and their activities have dramatically altered the fluxes of growth-limiting nutrients from the landscape to receiving waters. Unfortunately, these nutrient inputs have had profound negative effects upon the quality of surface waters worldwide. This review examines how eutrophication influences the biomass and species composition of algae in both freshwater and costal marine systems.

Main Features

An overview of recent advances in algae-related eutrophication research is presented. In freshwater systems, a summary is presented for lakes and reservoirs; streams and rivers; and wetlands. A brief summary is also presented for estuarine and coastal marine ecosystems.

Results

Eutrophication causes predictable increases in the biomass of algae in lakes and reservoirs; streams and rivers; wetlands; and coastal marine ecosystems. As in lakes, the response of suspended algae in large rivers to changes in nutrient loading may be hysteretic in some cases. The inhibitory effects of high concentrations of inorganic suspended solids on algal growth, which can be very evident in many reservoirs receiving high inputs of suspended soils, also potentially may occur in turbid rivers. Consistent and predictable eutrophication-caused increases in cyanobacterial dominance of phytoplankton have been reported worldwide for natural lakes, and similar trends are reported here both for phytoplankton in turbid reservoirs, and for suspended algae in a large river.

Conclusions

A remarkable unity is evident in the global response of algal biomass to nitrogen and phosphorus availability in lakes and reservoirs; wetlands; streams and rivers; and coastal marine waters. The species composition of algal communities inhabiting the water column appears to respond similarly to nutrient loading, whether in lakes, reservoirs, or rivers. As is true of freshwater ecosystems, the recent literature suggests that coastal marine ecosystems will respond positively to nutrient loading control efforts.

Recommendations and Outlook

Our understanding of freshwater eutrophication and its effects on algal-related water quality is strong and is advancing rapidly. However, our understanding of the effects of eutrophication on estuarine and coastal marine ecosystems is much more limited, and this gap represents an important future research need. Although coastal systems can be hydrologically complex, the biomass of marine phytoplankton nonetheless appears to respond sensitively and predictably to changes in the external supplies of nitrogen and phosphorus. These responses suggest that efforts to manage nutrient inputs to the seas will result in significant improvements in coastal zone water quality. Additional new efforts should be made to develop models that quantitatively link ecosystem-level responses to nutrient loading in both freshwater and marine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahl T, Wiederholm T (1977): Swedish water quality criteria. Chemicals causing eutrophication. SNV PM 918, Stockholm, Sweden. 124 pp

    Google Scholar 

  • Aizaki M, Terashima A, Nakahara H, Nishio T, Ishida Y (1987): Trophic status of Tilitso, a high altitude Himalayan lake. Hydrobiologia 153, 217–224

    CAS  Google Scholar 

  • An K-G, Jones JR (2002): Reservoir responses to the Asian monsoon with an emphasis on longitudinal gradients. J Freshwat Ecol 17, 151–160

    CAS  Google Scholar 

  • An K-G, Jones JR (2000): Factors regulating bluegreen dominance in a reservoir directly influenced by the Asian monsoon. Hydrobiologia 432, 37–8

    Article  Google Scholar 

  • Barica J (1978): Collapses of Aphanizomenon flos-aquae blooms resulting in massive fish kills in eutrophic lakes: effect of weather. Verh Internat Verein Limnol 20, 208–213

    Google Scholar 

  • Basu BK, Pick FR (1996): Factors regulating phytoplankton and Zooplankton biomass in temperate rivers. Limnol Oceanogr 41, 1572–1577

    CAS  Google Scholar 

  • Behrendt H (1993): Point and diffuse loads of selected pollutants in the River Rhein and its main tributaries. International Institute for Applied Systems Analysis (IIASA) working paper, Index No RR-93-001, Laxenburg, Austria

    Google Scholar 

  • Bennett EM, Carpenter SR, Caraco NF (2001): Human impact on erodable phosphorus and eutrophication: A global perspective. BioScience 51, 227–234

    Article  Google Scholar 

  • Bertolo A, Lescher-Moutoué F, Lacroix G (2001): Interaction effects of depth and planktivorous fish on plankton biomass. Verh Internat Verein Theor Angew Limnol 27, 1747–1751

    Google Scholar 

  • Bhade C, Unnit KS, Bhade S (2001): Limnology and eutrophication of Tawa Reservoir, MP State, India Verh Internat Verein Theor Angew Limnol 27, 3632–3635

    CAS  Google Scholar 

  • Biggs BJF (2000): Eutrophication of streams and rivers: dissolved nutrient-chlorophyll relationships for benthic algae. J N Amer Benthol Soc 19, 17–31

    Article  Google Scholar 

  • Billen G, Garner J, Hanset P (1994): Modelling phytoplankton development in whole drainage networks: the RIVERSTRAHLER Model applied to the Scine river system. Hydrobiologia 289, 119–137

    Article  Google Scholar 

  • Boesch DF, Burroughs RH, Baker JE, Mason RP, Rowe CL, Siefert RL (2001): Marine pollution in the United States: Significant accomplishments, future challenges. Pew Oceans Commission, Arlington, VA, USA. p 137

    Google Scholar 

  • Borchardt MA (1996): Nutrients, p 183–227. In: RJ Stevenson, ML Bothwell, and RL Lowe, Eds, Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, CA, USA

    Google Scholar 

  • Borum J (1996): Shallow waters and land/sea boundaries, p 179- 203. In: BB Jörgensen and K Richardson, Eds, Eutrophication in Coastal Marine Ecosystems, Coastal and Marine Studies 52. American Geophysical Union, Washington, DC, USA

    Google Scholar 

  • Boynton WR, Murray L, Hagy JD, Stokes C, Kemp MR (1996): A comparative analysis of eutrophication patterns in a temperate coastal lagoon. Estuaries 19(2B), 408–421

    Article  CAS  Google Scholar 

  • Bowen JL, Valiela I (2001): The ecological effects of urbanization of coastal watersheds: historical increases in nitrogen loads and eutrophication of Waquoit Bay estuaries. Can J Fish Aquat Sci 58, 1489–1500

    Article  CAS  Google Scholar 

  • Brezonik PL, Bierman VJ, Jr, Alexander RA, Anderson J, Barko J, Dortch M, Hatch L, Keeney D, Mulla D, Smith VH, Walker C, Whitledge T, Wiseman W, Jr (1999): Effects of reducing nutrient loads to surface waters within the Mississippi River basin and the Gulf of Mexico. Topic #4, Gulf of Mexico Hypoxia Assessment. NOAA Coastal Ocean Program Decision Analysis Series, NOAA Coastal Ocean Office, Silver Springs, MD, USA

    Google Scholar 

  • Brown CD, Hoyer MV, Bachmann RW, Canfield DE, Jr (2000): Nutrient-chlorophyll relationships: an evaluation of empirical nutrient-chlorophyll models using Florida and north-temperate lake data. Can J Fish Aquat Sci 57: 1574–1583

    Article  CAS  Google Scholar 

  • Brunner U, Bachofen R (1998): The biogeochemical cycles of phosphorus: a review of local and global consequences of the atmospheric input. Technol Environ Chem 67, 171–188

    CAS  Google Scholar 

  • Canfield DE, Jr (1983): Prediction of chlorophyll a concentrations in Florida lakes: the importance of phosphorus and nitrogen. Water Resources Bull 19, 255–262

    CAS  Google Scholar 

  • Canfield DE, Jr, Bachmann RW (1981): Prediction of total phosphorus concentrations, chlorophyll a, and Secchi depths in natural and artificial lakes. Can J Fish Aquat Sci 38, 414–423

    Google Scholar 

  • Canfield DE, Jr, Langeland KA, Maceina MJ et al. (1983): Trophic state classification of lakes with aquatic macrophytes. Can J Fish Aquat Sci 40, 1713–1718

    Google Scholar 

  • Canfield DE, Jr Phlips, E, Duarte CM (1989): Factors influencing the abundance of blue-green algae in Florida lakes. Can J Fish Aquat Sci 46, 1132–1237

    Article  Google Scholar 

  • Caraco NF (1995): Influence of human populations on P transfers to aquatic ecosystems: A regional scale study using large rivers. In: H Tiessen, Ed, Phosphorus in the Global Environment. John Wiley and Sons, New York, New York, p 235–244

    Google Scholar 

  • Carlson RE (1991): Expanding the trophic state concept to identify non-nutrient limited lakes and reservoirs, p 59–71. In: Enhancing the States’ Lake Management Programs. Monitoring and Lake Impact Assessment. North American Lake Management Society, Madison, WI, USA

    Google Scholar 

  • Carlson RE (1977): A trophic state index for lakes. Limnol Oceanogr 22, 361–369

    CAS  Google Scholar 

  • Carlson RE, Simpson JT (1998): A coordinator’s guide to volunteer lake monitoring methods. North American Lake Management Society, Madison, Wisconsin, USA

    Google Scholar 

  • Carmichael WW (1997): The cyanotoxins. Adv Bot Res 37, 211–256

    Article  Google Scholar 

  • Carney E (2002): The Kansas wetland survey, p 6. In: Central Plains Aquatic Bioassessment and Biocriteria Symposium, 18–19 September 2002, Lawrence, KS, USA (abstract)

  • Carney E (2001): Lake and wetland monitoring program report. Kansas Department of Health and Environment, Division of Environment, Bureau of Field Services, Topeka, KS, USA

    Google Scholar 

  • Carpenter SR (2002): Ecological futures: Building an ecology of the long now. Ecology 83, 2069–2083

    Google Scholar 

  • Carpenter SR, Kitchell JF, Eds (1993): The trophic cascade in lakes. Cambridge, UK

    Google Scholar 

  • Carpenter SR, Ludwig D, Brock WA (1999): Management of eutrophication for lakes subject to potentially irreversible change. Ecol Appl 9, 751–771

    Article  Google Scholar 

  • Carpenter SR, Caraco NF, Correll DL, Howarth RW, Sharpley AN, Smith VH (1998a): Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol Appl 8, 559–568

    Article  Google Scholar 

  • Carpenter SR, Bolgrien D, Lathrop RC, Stow CA, Reed T, Wilson MA (1998b): Ecological and economic analysis of lake eutrophication by nonpoint pollution. Australian J Ecol 23, 68–79

    Article  Google Scholar 

  • Carpenter SR, Christensen DL, Cole JJ, Cottingham KL, He X, Hodgson JR, Kitchell JF, Knight SE, Pace ML, Post DM, Schindler DE, Voichick N (1995): Biological control of eutrophication. Environ Sci Technol 29, 784–786

    Article  CAS  Google Scholar 

  • Champion M, Currie DJ (2000): Phosphorus-chlorophyll relationships in lakes, rivers and estuaries. Verh Int Ver Theor Angew Limnol 27, 1986–1989

    CAS  Google Scholar 

  • Chételat J, Pick FR, Morin A, Hamilton PB (1999): Periphyton bio-mass and community composition in rivers of different trophic status. Can J Fish Aquat Sci 56, 560–569

    Article  Google Scholar 

  • Chang WYB (2002): Chinese great lakes: their changes and impacts. Verh Int Ver Theor Angew Limnol 28, 307–310

    Google Scholar 

  • Chorus I, Ed (2001): Cyanotoxins: Occurrence, causes, consequences. Springer-Verlag, Heidelberg, Germany

    Google Scholar 

  • Chorus I, Bartram J, Eds (1999): Toxic cyanobacteria in water—A guide to their public health consequences. E and FN Spon, London, England

    Google Scholar 

  • Chow-Fraser P, Trew DO, Findlay D, Stainton M (1994): A test of the hypothesis to explain the sigmoid relationships between total phosphorus and chlorophyll concentrations in Canadian lakes. Can J Fish Aquat Sci 51, 2052–2065

    Google Scholar 

  • Cole JJ, Peierls BL, Caraco NF, Pace ML (1993): Nitrogen loading of rivers as a human-driven process, p 141–157. In: MJ McDonnell and STA Pickett, Eds, Humans as Components of Ecosystems. Springer-Verlag, New York, USA

    Google Scholar 

  • Cooke GD, Kennedy RH (2001): Managing drinking water supplies. J Lake Reservoir Manage 17, 157–174

    CAS  Google Scholar 

  • Cooke GD, Welch EB, Peterson SA, Newroth PR (1993): Restoration and manangement of lakes and reservoirs. Lewis Publishers, Boca Raton, Florida, USA

    Google Scholar 

  • Contreras F, Kerekes J (1993): Total phosphorus-chlorophyll relationships in tropical coastal lagoons in Mexico. Verh Int Ver Theor Angew Limnol 25, 448–451

    CAS  Google Scholar 

  • Corrales RA, Maclean JL (1995): Impacts of harmful algae on seafarming in the Asia-Pacific areas. J Appl Phycol 7, 151–162

    Article  Google Scholar 

  • Correll DL (1998): The role of phosphorus in the eutrophication of receiving waters: A review. J Environ Quality 27, 261–266

    CAS  Google Scholar 

  • Cottingham KL, Knight SE (1995): Effects of Daphnia on the response of mesotrophic lakes to experimental enrichment. Wat Sci Technol 32, 157–163

    Article  Google Scholar 

  • Crosbie B, Chow-Fraser P (1999): Percentage land use in the watershed determines the water and sediment quality of 22 marshes in the Great Lakes Basin. Can J Fish Aquat Sci 56, 1781–1791

    Article  Google Scholar 

  • Danielidis DB, Spartinou M, Economou-Amilli A (1996): Limnological survey of Lake Amvrakia, western Greece. Hydrobiologia 318, 207–218

    Article  CAS  Google Scholar 

  • Davis JR, Ed (1997): Managing algal blooms: Outcomes from CSIRO’s multi-divisional blue-green algal program. CSIRO, Canberra, ACT, Australia

    Google Scholar 

  • de Bernardi R, Calderoni A, Mosello R (1996): Environmental problems in Italian lakes, and lakes Maggiore and Orta as successful examples of correct management leading to restoration. Verh Int Ver Theor Angew Limnol 26, 123–138

    Google Scholar 

  • Dickman MD, Pu PM, Zheng CS (2001): Some consequences of hypereutrophication and wind-induced mixing for the limnology of Lake Tai in eastern China. Verh Int Ver Theor Angew Limnol 27, 3669–3673

    Google Scholar 

  • Dillon PJ, Rigler FH (1974): The phosphorus-chlorophyll relationship in lakes. Limnol Oceanogr 19, 767–773

    CAS  Google Scholar 

  • Dodds WK (1996): Assessment of blue-green algal toxins in Kansas. Kansas Water Resources Research Institute Report G2020-02. Contribution 320, University of Kansas and Kansas State University, 36 pp

  • Dodds WK, Jones JR, Welch EB (1998): Suggested classification of stream trophic state: Distributions of temperate stream types by chlorophyll, total nitrogen, and phosphorus. Water Res 32, 1455–1462

    Article  CAS  Google Scholar 

  • Dodds WK, Smith VH, Lohman K (2002): Nitrogen and phosphorus relationships to benthic algal biomass in temperate streams. Can J Fish Aquat Sci 59, 865–874

    Article  Google Scholar 

  • Dodds WK, Smith VH, Zander B (1997): Developing nutrient targets to control benthic chlorophyll levels in streams: A case study of the Clark Fork River. Water Research 31, 1838–1750

    Article  Google Scholar 

  • Dodds W K, Welch EB (2000): Establishing nutrient criteria in streams. J N Amer Benthol Soc 19, 186–196

    Article  Google Scholar 

  • Dokulil MT (1994): Environmental control of phytoplankton productivity in turbulent turbid systems. Hydrobiologia 289, 65–72

    Article  CAS  Google Scholar 

  • Downing JA, McCauley E (1992): The nitrogen:phosphorus relationship in lakes. Limnol Oceanogr 37, 936–945

    CAS  Google Scholar 

  • Downing JA, Watson SB, McCauley E (2001): Predicting Cyanobacteria dominance in lakes. Can J Fish Aquat Sci 58, 1905–1908

    Article  Google Scholar 

  • Duggan IC, Green JD, Thomasson K (2001): Do rotifers have potential as bioindicators of lake trophic state? Verh Int Ver Theor Angew Limnol 27, 3497–3502

    Google Scholar 

  • Elmgren R, Larsson U (2001): Eutrophication in the Baltic Sea area: Integrated coastal management issues, p 15–35. In: B von Bodungen and RK Turner, Eds, Science and Integrated Coastal Management, Dahlem University Press, Berlin, Germany

    Google Scholar 

  • Eloranta P (2000): Use of littoral algae in lake monitoring, p 97–104. In: P Heinonen, Z Giuliano, and A Van der Beken, Eds, Hydrological and Limnological Aspects of Lake Monitoring. Wiley and Sons, Ltd, West Sussex, England

    Google Scholar 

  • Elser JJ (1999): The pathway to noxious cyanobacterial blooms in lakes: the food web as the final turn. Freshwat Biol 42, 1–7

    Article  Google Scholar 

  • Faafeng B, Hessen DO (1993): Nitrogen and phosphorus concentrations and N:P ratios in Norwegian Lakes: perspectives on nutrient limitation. Verh Int Verein Theor Angew Limnol 25, 465–469

    CAS  Google Scholar 

  • Ferris JM, Tyler PA (1985): Chlorophyll-Total phosphorus relationships in Lake Burragorang, New South Wales, and some other Southern Hemisphere lakes. Aust J Mar Freshwater Res 36, 157–168

    Article  CAS  Google Scholar 

  • Forsberg C, Ryding S-0 (1980): Eutrophication parameters and trophic state indices in 30 Swedish waste-receiving lakes. Arch Hydrobiol 89, 189–207

    CAS  Google Scholar 

  • Francoeur SN (2001): Meta-analysis of lotic nutrient amendment experiments: detecting and quantifying subtle responses. J N Amer Benthol Soc 20, 358–368

    Article  Google Scholar 

  • Fulton RS, Paerl HW (1987): Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton. J Plankton Res 9, 837–855

    Article  Google Scholar 

  • Fukushima T, Muraoka K (1988): Simple model to predict water quality in 90 Japanese lakes. Verh Int Ver Theor Angew Limnol 23, 812–827

    Google Scholar 

  • Gophen M, Smith VH, Nishri A, Threlkeld ST (1999): Nitrogen deficiency, phosphorus sufficiency, and the invasion of Lake Kinneret, Israel, by the N2-fixing cyanobacterium Aphanizomenon ovalisporum. Aquat Sci 61, 293–306

    CAS  Google Scholar 

  • Gulati RD, Lammens EHRR, Meijer J-L, van Donk E, Eds (1990): Biomanipulation - Tool for Water Management. Kluwer, Belgium

    Google Scholar 

  • Ha K, Kim HW, Joo GJ (1998): The phytoplankton succession in the lower part of hypertrophie Nakdong River (Mulgum), South Korea. Hydrobiologia 253, 1–11

    Google Scholar 

  • Håkanson L (1994): A review of effect-dose-sensitivity models for aquatic ecosystems. Int Rev Ges Hydrobiol 79, 621–667

    Article  Google Scholar 

  • Håkanson L, Wallin M (1991): An outline of ecometric analysis to establish load diagrams for nutrients/eutrophication. Environ-metrics 2, 49–68

    Google Scholar 

  • Hall J, Cox N (1995): Nutrient concentrations as predictors of nuisance Hydrodictyon reticulatum populations in New Zealand. J Aquat Plant Manage 3, 68–74

    Google Scholar 

  • Hall J, Payne G (1997): Factors controlling the growth of field populations of Hydrodictyon reticulatum in New Zealand. J Appl Ecol 9, 229–236

    Google Scholar 

  • Hansson L-A, Annadotter H, Bergman E et al. (1998): Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1, 558–574

    Article  Google Scholar 

  • Harding WR (1992): A contribution to the knowledge of South African coastal vleis: the limnology and phytoplankton periodicity of Princess Vlei, Cape Peninsula. Water SA 18, 121–130

    CAS  Google Scholar 

  • Harper DM, Stewart WDP (1987): The effects of land use upon water chemistry, particularly nutrient enrichment, in shallow lowland lakes: comparative studies of three lochs in Scotland. Hydrobiologia 148, 211–229

    Article  CAS  Google Scholar 

  • Harper DM, Phillips G, Chilvers A, Kitalka N, Mavuti K (1993): Eutrophication prognosis for Lake Naivasha, Kenya. Verh Int Ver Theor Angew Limnol 25, 861–865

    CAS  Google Scholar 

  • Havens KE, Walker WW, Jr (2002): Development of a total phosphorus concentration goal in the TMDL process for Lake Okeechobee, Florida (USA). J Lake Reservoir Manage 18, 227–238

    CAS  Google Scholar 

  • Hawser SP, O’Neil JM, Roman MR, Codd GA (1992): Toxicity of blooms of the cyanobacterium Trichodesmium to Zooplankton. J Appl Phycol 4, 79–86

    Article  Google Scholar 

  • Hecky RE (1993): The eutrophication of Lake Victoria. Verh Int Ver Theor Angew Limnol 25, 39–8

    CAS  Google Scholar 

  • Heinonen P, Guiliano Z, Premazzi G (2000): Use and impact of monitoring results for water protection management, p 351–363. In: P Heinonen, Z Giuliano, and A Van der Beken, Eds, Hydrological and Limnological Aspects of Lake Monitoring. Wiley and Sons, Ltd, West Sussex, England

    Google Scholar 

  • Heiskary S, Markus H (2001): Establishing relationships among nutrient concentrations, phytoplankton abundance, and biochemical oxygen demand in Minnesota, USA, rivers. Lake Reservoir Manage 17, 251–262

    CAS  Google Scholar 

  • Hervé S (2000): Chemical variables in lake monitoring, p 41–54. In: P Heinonen, Z Giuliano, and A Van der Beken, Eds, Hydrological and Limnological Aspects of Lake Monitoring. Wiley and Sons, Ltd, West Sussex, England

    Google Scholar 

  • Hessen DO, Vadstein O, Magnusson J (1992): Nitrogen to Marine Areas: on the Application of a Critical Load Concept. Background document to the workshop ’Critical Loads for Nitrogen’ in Loekeberg, Sweden, 6–10 April 1992. Environment Canada and Nordic Council of Ministers, NORD, 1992, 41. 33 pp

    Google Scholar 

  • Hobbie JE, Ed (2000): Estuarine science: A synthetic approach to research and practice. Island Press, Washington, DC

    Google Scholar 

  • Horner RR, Welch EB, Seeley MR, Jacoby JM (1990): Réponses of periphyton to changes in current velocity, suspended sediment and phosphorus concentration. Freshwat Biol 24, 215–232

    Article  Google Scholar 

  • Howarth RW (1993): The role of nutrients in coastal waters, p 177–202. In: Managing wastewater in coastal urban areas. Report from the National Research Council on Wastewater Management for Coastal Urban Areas. National Academy Press, Washington, DC, USA

    Google Scholar 

  • Howarth RW, Anderson D, Cloern J, Elfring C, Hopkinson C, Lapointe B, Malone T, Marcus N, McGlathery K, Sharpley A, Walker; D (2000): Nutrient pollution of coastal rivers, bays, and seas. Issues in Ecology 7, Ecological Society of America, Washington, DC, USA

    Google Scholar 

  • Hoyer MV, Jones JR (1983): Factors affecting the relation between phosphorus and chlorophyll a in midwestern reservoirs. Can J Fish Aquat Sci 40, 192–199

    Article  CAS  Google Scholar 

  • Hrbácek J, Desortová B, Popovský J (1978): Influence of the fishstock on the phosphorus-chlorophyll ratio. Verh Int Ver Theor Angew Limnol 20, 1624–1628

    Google Scholar 

  • Istvánovics V, Somlyódy L (1999): Load-response relationships in the Upper Kis-Balaton Reservoir—The role of spatial variability. Freshwat Biol 41, 1–19

    Article  Google Scholar 

  • Janicki AJ (2001): TMDL’s in the Tampa Bay estuary. ERF Newsletter 24(2), 14. Estuarine Research Foundation, Port Republic, MD, USA

    Google Scholar 

  • Jensen JP, Jeppesen E, Olrik K, Kristensen P (1994): Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish lakes. Can J Fish Aquat Sci 51, 1692–1699

    Article  Google Scholar 

  • Jones G (1997): Limnological study of cyanobacterial growth in three south-east Queensland reservoirs, p 51–66. In: JR Davis, Ed, Managing Algal Blooms: Outcomes from CSIRO’s Multi-divisional Blue-green Algal Program. CSIRO, Canberra, ACT, Australia

    Google Scholar 

  • Jones JR, Bachmann RW (1976): Prediction of phosphorus and chlorophyll levels in lakes. J Water Pollut Control Fed 48, 2176–2182

    CAS  Google Scholar 

  • Jones JR, Knowlton MF, Kaiser MS (1998): Effects of aggregation on chlorophyll-phosphorus relations in Missouri reservoirs. Lake Reservoir Manage 14, 1–9

    CAS  Google Scholar 

  • Jones JR, Knowlton MF, An K-G (1997): Developing a paradigm to study and model the eutrophication process in Korean reservoirs. Korean J Limnology 30(Suppl), 463–471

    Google Scholar 

  • Jones JR, Knowlton MF, Swar DB (1989): Limnological reconnais- sance of waterbodies in central and southern Nepal. Hydrobiologia 184, 171–189

    CAS  Google Scholar 

  • Jones JR, Lohman K, Umaña VG (1993): Water chemistry and trophic state of eight lakes in Costa Rica. Verh Int Ver Theor Angew Limnol 25, 899–905

    CAS  Google Scholar 

  • Jones JR, Perkins BD, Witt A, Jr, Kaiser MS, Thamasara S, Siriworakul M, Benyasut P (2000): Limnological characteristics of some reservoirs in Thailand. Verh Int Ver Theor Angew Limnol 27, 2158–2166

    CAS  Google Scholar 

  • Jones RA, Rast W, Lee GF (1979): Relationships between summer mean and maximum chlorophyll a concentrations in lakes. Env Sci Technol 13, 869–870

    Article  CAS  Google Scholar 

  • Jones RC (2000): Long-term trends in phytoplankton chlorophyll a in the tidal freshwater Potomac River, USA: Relationship to climatic and management factors. Verh Int Ver Theor Angew Limnol 27, 2959–2962

    CAS  Google Scholar 

  • Kann J, Smith VH (1999): Estimating the probability of exceeding elevated pH values critical to fish populations in a hypereutrophic lake. Can J Fish Aquat Sci 56, 1–9

    Article  Google Scholar 

  • Kaul V (1977): Limnological survey of Kashmir lakes with reference to trophic status and conservation. Int J Ecol Envir Sci 3, 19–44

    Google Scholar 

  • Kauppi L, Pietiläinen O-P, Knuuttila S (1993): Impacts of agricultural nutrient loading on Finnish watercourses. Water Sci Technol 28, 461–471

    CAS  Google Scholar 

  • Kebede E, G-Mariam Z, Ahlgren I (1994): The Ethiopian Rift Valley lakes: chemical characteristics of a salinity-alkalinity series. Hydrobiologia 288, 1–12

    Article  CAS  Google Scholar 

  • Klemer AR, Konopka A (1989): Causes and consequences of blue-green algal (cyanobacterial) blooms. Lake Reservoir Manage 5,9–199

    Google Scholar 

  • Köhler J, Gelbrecht J (1998): Interactions between phytoplankton dynamics and nutrient supply along the lowland river Spree, Germany. Verh Int Ver Theor Angew Limnol 26, 1045–1049

    Google Scholar 

  • Kopácek J, Stuchlík E, Vyhnálek V, Závodský D (1996): Concentration of nutrients in selected lakes in the High Tatra Mountains, Slovakia: effect of season and watershed. Hydrobiologia 319, 47–55

    Article  Google Scholar 

  • Krewer JA, Holm HW (1982): The phosphorus-chlorophyll a relationship in periphytic communities in a controlled ecosystem. Hydrobiologia 94, 173–176

    CAS  Google Scholar 

  • Lacroix G, Lescher-Moutoué C, Pourriot R (1996): Trophic interactions, nutrient supply, and structure of freshwater pelagic food webs, p 162–179. In: M Hochberg, J Clobert, and R Barbault, Eds, Aspects in the Genesis and Maintenance of Biological Diversity. Oxford University Press, Oxford, UK

    Google Scholar 

  • Lathrop RC, Carpenter SR, Stow CA, Soranno PA, Panuska JC (1998): Phosphorus loading reductions needed to control blue-green algal blooms in Lake Mendota. Can J Fish Aquat Sci 55, 1169–1178

    Article  CAS  Google Scholar 

  • Lee GF, Jones RA (1981): Application of the OECD eutrophication modeling approach to estuaries, p 549–568. In: BJ Nielson and LE Cronin, Eds, Estuaries and nutrients. Humana Press, Clifton, NJ, USA

    Google Scholar 

  • Lohman K, Jones JR (1999): Nutrient-sestonic chlorophyll relations in northern Ozark streams. Can J Fish Aquat Sci 56, 124–130

    Article  Google Scholar 

  • Lund MA (1998): Are Australian wetlands less productive than Northern Hemisphere wetlands under the same nutrient conditions? Verh Int Ver Theor Angew Limnol 27, 1661–1665

    Google Scholar 

  • Lund JWG (1970): Primary production. Wat Treat Exam 19, 332–358

    CAS  Google Scholar 

  • Matson PA, Parton WJ, Power AG, Swift MJ (1997): Agricultural intensification and ecosystem properties. Science 277, 504–509

    Article  CAS  Google Scholar 

  • Mazumder A (1994a): Phosphorus-chlorophyll relationships under contrasting herbivory and thermal stratification: Patterns and predictions. Can J Fish Aquat Sci 51, 390–400

    Article  CAS  Google Scholar 

  • Mazumder A (1994b): Patterns of algal biomass in dominant oddversus even-link lake ecosystems. Ecology 75, 1141–1149

    Article  Google Scholar 

  • Mazumder A, Havens KE (1998): Nutrient-algae relationships in temperate and tropical lakes. Can J Fish Aquat Sci 55, 1652–1662

    Article  CAS  Google Scholar 

  • McBride GB, Pridmore RD (1988): Prediction of [chlorophyll-a] in impoundments of short hydraulic residence time: mixing effects. Verh Int Verh Theor Angew Limnol 23, 832–836

    Google Scholar 

  • McCauley E, Downing JA, Watson S (1989): Sigmoid relationships between nutrients and chlorophyll among lakes. Can J Fish Aquat Sci 46, 1171–1175

    Article  CAS  Google Scholar 

  • Meeuwig JJ, Rasmussen JB, Peters RH (1998): Turbid waters and clarifying mussels: Their moderation of Chl, nutrient relations in estuaries. Mar Ecol Progr Ser 171, 139–150

    CAS  Google Scholar 

  • McGarrigle ML (1993): Aspects of river eutrophication in Ireland. Annals Limnol 29, 355–364

    Google Scholar 

  • Meeuwig JJ, Kauppila P, Pitkänen H (2000): Predicting coastal eutrophication in the Baltic: a limnological approach. Can J Fish Aquat Sci 57, 844–855

    Article  Google Scholar 

  • Mitrovic SM, Hawkins PR, Bowling LC, Buckney RT, Cheng DMH (2000): Low nitrate concentrations in a tidally mixed river coincide with replacement of chlorophytes by the cyanophyte Microcystis. Verh Int Ver Theor Angew Limnol 27, 924–929

    Google Scholar 

  • Moss B, Hooker I, Balls H, Manson K (1989): Phytoplankton distribution in a temperate floodplain lake and river system. I. Hydrology, nutrient sources and phytoplankton biomass. J Plankton Res 11, 813–835

    Article  Google Scholar 

  • Moss B, Balls H (1989): Phytoplankton distribution in a temperate floodplain lake and river system. II. Seasonal changes in the phytoplankton communities and their control by hydrology and nutrient availability. J Plankton Res 11, 836–867

    Google Scholar 

  • Moss B, Madgewick J, Phillips G (1996): A guide to the restoration of nutrient-enriched shallow lakes. Broads Authority, Norwich, UK. 180 pp

    Google Scholar 

  • Myers N (1995): Environmental unknowns. Science 269, 358–360

    Article  CAS  Google Scholar 

  • Nicholls KH, Dillon PJ (1978): An evaluation of phosphorus-chlo-rophyll-phytoplankton relationships for lakes. Int Revue ges Hydrobiol 63, 144–154

    Article  Google Scholar 

  • National Research Council (2000): Clean coastal waters: Understanding and predicting the effects of nutrient pollution. National Academy Press, Washington, DC, USA

  • Nielsen SL, Sand-Jensen K, Borum J, Geertz-Hansen O (2002): Phytoplankton, nutrients, and transparency in Danish coastal waters. Estuaries 25, 930–937

    Article  CAS  Google Scholar 

  • Nürnberg G (1996): Trophic state of clear and colored, soft-and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reservoir Manage 12, 432–447

    Google Scholar 

  • OECD (1982): Eutrophication of waters: Monitoring, assessment and control. Organisation for Economic and Cooperative Development, Paris, France

  • Paerl HW (1988): Nuisance phytoplankton blooms in coastal, es-tuarine, and inland waters. Limnol Oceanogr 33, 823–847

    CAS  Google Scholar 

  • Paerl HW, Mallin M, Rudek J, Bates P (1990): The potential for eutrophication and nuisance algal blooms in the lower Neuse River, NC. Albemarle-Pamlico Estuarine Study Report 90-15. North Carolina Natural Resources and Community Development, Raleigh, NC

    Google Scholar 

  • Petersen JE, Chen CC, Kemp WM (1997): Scaling aquatic primary productivity: experiments under nutrient- and light-limited conditions. Ecology 78, 2326–2338

    Google Scholar 

  • Phlips EJ, Aldridge FJ, Hansen P, Zima PV, Ihnat J, Conroy M, Ritter P (1993): Spatial and temporal variability of trophic state parameters in a shallow subtropical lake (Lake Okeechobee, Florida, USA). Arch Hydrobiol 128, 437–458

    Google Scholar 

  • Piyasiri S (2001): Increasing eutrophy in Kotmale Reservoir, Sri Lanka: A 5-year study. Verh Int Ver Theor Angew Limnol 27, 3604–3607

    CAS  Google Scholar 

  • Portielje R, Van der Molen TT (1999): Relationships between eutrophication variables: from nutrient loading to transparency. Hydrobiologia 408/409, 375–387

    Article  CAS  Google Scholar 

  • Postel SL, Carpenter SR (1997): Freshwater ecosystem services, p 195–214. In: G Daily, Ed, Nature’s services. Island Press, Washington, DC, USA

    Google Scholar 

  • Prairie YT, Duarte CM, Kalff J (1989): Unifying nutrient-chlorophyll relationships in lakes. Can J Fish Aquat Sci 46, 1176–1182

    Article  CAS  Google Scholar 

  • Pridmore RD, Vant TO, Rutherford JC (1985): Chlorophyll-nutrient relationships in North Island lakes (New Zealand). Hydrobiologia 131, 181–189

    Article  Google Scholar 

  • Proulx M, Pick FR, Mazumder A, Hamilton PB, Lean DRS (1996): Effects of nutrients and planktivorous fish on the phytoplankton of shallow and deep aquatic systems. Ecology 77, 1556–1572

    Article  Google Scholar 

  • Prygiel J, Leitao M (1994): Cyanophycean blooms in the reservoir Val Joly (Northern France) and their development in downstream rivers. Hydrobiologia 289, 85–96

    Article  CAS  Google Scholar 

  • Quirós R (1998): Trophic cascade effects in a continous series of temperate-subtropical waterbodies. Verh Int Ver Theor Angew Limnol 26, 2315–2319

    Google Scholar 

  • Quirós R (1991): Empirical relationships between nutrients, phyto and Zooplankton, and relative fish biomass in lakes and reservoirs of Argentina. Verh Int Ver Theor Angew Limnol 24, 1198–1206

    Google Scholar 

  • Quirós R (1990): Factors related to variance in residuals in chlorophyll-phosphorus regressions in lakes and reservoirs of Argentina. Hydrobiologia 200/201, 343–355

    Article  Google Scholar 

  • Rabelais N, Nixon SW, Eds (2002): Dedicated issue. Nutrient over-enrichment in coastal waters: Global patterns of cause and effect. Estuaries 25(4b), 639–900

    Google Scholar 

  • Rask M, Olin M, Horppila J, Lehtovaara A, Väisänen A, Ruuhiärvi J, Sammalkorpi I (2002): Zooplankton and fish communities in Finnish lakes of different trophic status: responses to eutrophication. Verh Int Ver Theor Angew Limnol 28, 396–401

    Google Scholar 

  • Reckhow KH, Chapra SC (1983): Engineering Approaches for Lake Management. Vol 1, Data Analysis and Empirical Modeling. Butterworth, Boston, MA, USA

    Google Scholar 

  • Rekolainen S, Pitkänen H, Bleeker A, Felix S (1995): Nitrogen and phosphorus fluxes from Finnish agricultural areas to the Baltic Sea. Nordic Hydrol 26, 55–72

    CAS  Google Scholar 

  • Reynolds CS (1997): Vegetative processes in the pelagic: A model for ecosystem study. Ecology Institute, Oldendorf/Luhe, Germany. 371 pp

    Google Scholar 

  • Reynolds CS (1994): Are phytoplankton dynamics in rivers so different from those in shallow lakes? Hydrobiologia 289, 1–7

    Article  Google Scholar 

  • Richardson K (1996): Conclusion, research and eutrophication control, p 243–267. In: BB Jørgensen and K Richardson, Eds, Eutrophication in Coastal Marine Ecosystems, Volume 52, American Geophysical Union, Washington, DC, USA

    Google Scholar 

  • Sakamoto M (1966): Primary production by phytoplankton in some Japanese lakes and its dependence on lake depth. Arch Hydrobiol 62, 1–28

    Google Scholar 

  • Salas HJ, Martino P (1991): A simplified phosphorus trophic state model for warm-water tropical lakes. Water Research 25, 341–350

    Article  CAS  Google Scholar 

  • Sarvala J, Helminen H, Karjalainen J (2000): Restoration of Finnish lakes using fish removal: changes in the chlorophyll-phos-phorus relationship indicate multiple controlling mechanisms. Verh Int Ver Theor Angew Limnol 27, 1473–1479

    CAS  Google Scholar 

  • Sas H (1989): Lake restoration by reduction of nutrient loading: Expectations, experiences, extrapolations. Academia Verlag, Richarz, St. Augustin, Germany

    Google Scholar 

  • Scheffer M (1998): Ecology of shallow lakes. Chapman and Hall, London, UK

    Google Scholar 

  • Scheffer M, Hosper H, Meijer M-L, Moss B, Jeppesen E (1993): Alternative equilibria in shallow lakes. Trends Ecol Evol 8, 260–262

    Article  Google Scholar 

  • Schindler DW (1981): Studies of eutrophication in lakes and their relevance to the estuarine environment, p 71–82. In: BJ Nielson and LE Cronin, Eds, Estuaries and Nutrients. Humana Press, Clifton, NJ, USA

    Google Scholar 

  • Schindler DW (1977): Evolution of phosphorus limitation in lakes. Science 195, 260–262

    Article  CAS  Google Scholar 

  • Schmidt A (1994): Main characteristics of the phytoplankton of the Southern Hungarian section of the River Danube. Hydrobiologia 289, 97–108

    Article  Google Scholar 

  • Schramm W (1999): Factors influencing seaweed responses to eutrophication: some results from EU-project EUMAC. J Appl Phycol 11, 69–78

    Article  Google Scholar 

  • Scip KL (1994): Phosphorus and nitrogen limitation of algal biomass across trophic gradients. Aquat Sci 56, 16–28

    Article  Google Scholar 

  • Scip KL, Jeppesen E, Jensen JP, Faafeng B (2000): Is trophic state or regional location the strongest determinant for Chl-a/TP relationships in lakes? Aquat Sci 62, 195–204

    Article  Google Scholar 

  • Seip KL, Sas H, Vemij S (1992): Nutrient-chlorophyll trajectories across trophic gradients. Aquat Sci 54, 58–76

    Article  Google Scholar 

  • Scip KL, Ibrekk H (1988): Regression equations for lake management—how far do they go? Verh Int Ver Theor Angew Limnol 23, 778–785

    Google Scholar 

  • Scip KL, Satoh T (1984): The impact of nutrient load on total biomass and species succession in Lake Suwa, Japan. Verh Int Ver Theor Angew Limnol 22, 1142–1149

    Google Scholar 

  • Sharp JH (2001): Marine and aquatic communities, stress from eutrophication, p 1–11. In: Encyclopedia of Biodiversity, volume 4. Academic Press, New York, USA

    Google Scholar 

  • Shapiro J (1989): Current beliefs regarding dominance by blue-greens: The case for the importance of CO2 and pH. Verh Int Ver Theor Angew Limnol 24, 38–54

    Google Scholar 

  • Shapiro J, Lamarra V, Lynch M (1975): Biomanipulation: an ecosystem approach to lake restoration, p 85–96. In: PL Brezonik and JL Fox, Eds, Proceedings of a Symposium on Water Quality Management through Biological Control. University of Florida, Gainesville, FL, USA

    Google Scholar 

  • Sims JT, Simard RR, Joern BC (1998): Phosphorus loss in agricultural drainage: Historical perspective and current research. J Environ Quality 27, 277–297

    Article  CAS  Google Scholar 

  • Sivonen K (2000): Toxic cyanobacteria, p 81–96. In: P Heinonen, Z Giuliano, and A Van der Beken, Eds, Hydrological and Limnological Aspects of Lake Monitoring. Wiley and Sons, Ltd, West Sussex, England

    Google Scholar 

  • Søndergaard M, Jeppesen E, Jensen JP, Lauridsen T (2000): Lake restoration in Denmark. Lakes Reserv Res Manage 5, 151–159

    Article  Google Scholar 

  • Smith VH (2001): Blue-green algae in eutrophic fresh waters. LakeLine 21(1), 34–37

    Google Scholar 

  • Smith VH (1998): Cultural eutrophication of inland, estuarine, and coastal waters, p 7–49. In: ML Pace and PM Groffman, Eds, Successes, Limitations and Frontiers in Ecosystem Science, Springer-Verlag, New York, USA

    Google Scholar 

  • Smith VH (1990a): Phytoplankton responses to eutrophication in inland waters, p 231-249. In: I. Akatsuka, Ed, An Introduction to Applied Phycology. SPB Academic Publishing, Amsterdam

    Google Scholar 

  • Smith VH (1990b): Effects of nutrients and non-algal turbidity on blue-green algal biomass in North Carolina reservoirs. Lake Reservoir Manage 6, 125–131

    Google Scholar 

  • Smith VH, Sieber-Denlinger J, deNoyelles F, Jr, Campbell S, Pan S, Randtke SJ, Blain GT, Strasser VA (2003): Managing taste and odor problems in a eutrophic drinking water reservoir. J Lake Reservoir Manage (in press)

  • Smith VH, Willen E, Karlsson B (1987): Predicting the summer peak biomass of four species of blue-green algae (Cyanophyta/Cyano-bacteria) in Swedish lakes. Water Resources Bull 23, 397–402

    Google Scholar 

  • Smith VH (1986): Light and nutrient effects on the relative biomass of blue-green algae in lake phytoplankton. Can J Fish Aquat Sci 43, 148–153

    Article  Google Scholar 

  • Smith VH (1985): Predictive models for the biomass of blue-green algae in lakes. Water Resources Bull 21, 433–439

    CAS  Google Scholar 

  • Smith VH (1982): The nitrogen and phosphorus dependence of algal biomass in lakes: An empirical and theoretical analysis. Limnol Oceanogr 27, 1101–1112

    Article  CAS  Google Scholar 

  • Smith VH, Tilman GD, Nekola JC (1999): Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100, 179–196

    Article  CAS  Google Scholar 

  • Smith VH, Bennett SJ (1999): Nitrogen, phosphorus supply ratios and phytoplankton community structure in lakes. Arch Hydro-biol 146, 37–53

    CAS  Google Scholar 

  • Soballe DM, Kimmel BL (1987): A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology 68, 1943–1954

    Article  Google Scholar 

  • Sorvala J, Helminen H, Karjalainen J (2000): Restoration of Finnish lakes using fish removal: changes in the chlorophyll-phosphorus relationship indicate multiple controlling mechanisms. Verh Int Ver Theor Angew Limnol 27, 1473–1479

    Google Scholar 

  • Sutcliffe DW, Jones JG, Eds (1992): Eutrophication: Research and application to water supply. Freshwater Biological Association, Ambleside, United Kingdom

    Google Scholar 

  • Stadelmann TH, Brezonik PL, Kloiber S (2001): Seasonal patterns of chlorophyll a and Secchi disk transparency in lakes of East-Central Minnesota: Implications for design of ground-and satellite-based monitoring programs. J Lake Reservoir Manage 17, 299–314

    Article  CAS  Google Scholar 

  • Swedish EPA (2000): Environmental quality criteria: Coasts and seas. Swedish Environmental Protection Agency Report 5052, Stockholm, Sweden. 138 pp

    Google Scholar 

  • Tanik A, Beler Baykal B, Gonenc IE (1999): The impact of agricultural pollutants in six drinking water reservoirs. Water Sci Technol 40, 11–17

    Article  CAS  Google Scholar 

  • Thornton JA (1980): A comparison of the summer phosphorus loadings to three Zimbabwean water-supply reservoirs of varying trophic states. Water SA 6, 163–170

    CAS  Google Scholar 

  • Traill I (1991): Loch Lomond: A eutrophication study 1987–1989. Clyde River Purification Board Technical Report 96. Scottish Environment Protection Agency, East Kilbride, Scotland

    Google Scholar 

  • Trimbee AM, Prepas EE (1987): Evaluation of total phosphorus as a predictor of the relative biomass of blue-green algae with emphasis on Alberta lakes. Can J Fish Aquat Sci 4, 1337–1342

    Article  Google Scholar 

  • UK Environment Agency (1998): Environmental Issues Series—Aquatic eutrophication in England and Wales. UK Environment Agency Consultative Report, December 1998 US EPA (2002): http:/www.epa.gov/waterscience/criteria/nutrient/ guidance/index.html

  • US EPA (1996a): Environmental indicators of water quality in the United States, US EPA 841-R-96-02, Office of Water (4503F), US Government Printing Office, Washington, DC, USA

    Google Scholar 

  • US EPA (1996b): National nutrient assessment workshop. Proceedings, December 4–6, 1995. US EPA 822-R-96-004, Office of Water, US Government Printing Office, Washington, DC, USA

    Google Scholar 

  • Valiela I, Collins G, Kremer J, Lajtha K, Geist M, Seely B, Brawley J, Sham CH (1997): Nitrogen loading from coastal watersheds to receiving estuaries: New method and application. Ecol Appl 7, 358–380

    Article  Google Scholar 

  • Valiela I, Tomasky G, Hauxwell J, Cole ML, Cebrián J, Kroeger; KD (2000): Operationalizing sustainability: Management and risk assessment of land-derived nitrogen loads to estuaries. Ecol Appl 10, 1006–1023

    Article  Google Scholar 

  • Van Ginkel CE, Silberbauer MJ, Vermaak E (2000): The seasonal and spatial distribution of cyanobacteria in South African surface waters. Verh Int Ver Theor Angew Limnol 27, 871–878

    Google Scholar 

  • Van Nieuwenhuyse EE, Jones JR (1996): Phosphorus-chlorophyl-relationship in temperate streams and its variation with stream catchment area. Can J Fish Aquat Sci 53, 99–105

    Article  Google Scholar 

  • Varis O, Fraboulet-Jussila S (2002): Analysis of eutrophication level and critical loads of Lac de Guiers, Senegal. Verh Int Ver Theor Angew Limnol 28, 462–466

    Google Scholar 

  • Victor R, Al Ujaily SR (1999): Water quality and management strategies of mountain researvoirs in arid northern Oman, p 307–350. In: MFA Goosen and W Shaaya, Eds Water Management, Purification, and Conservation in Arid Climates, Vol 1. Tech-nomic Publ Co Inc, Lancaster, UK

    Google Scholar 

  • Vitousek PM, Aber J, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman GD (1997): Human alteration of the global nitrogen cycle: Causes and consequences. Ecological Applications 7, 737–750

    Google Scholar 

  • Vollenweider RA (1992): Coastal marine eutrophication, principles and control, p 1–20. In: RA Vollenweider, R Marchetti, and R Viviani, Eds, Marine Coastal Eutrophication. The Response of Marine Transitional Systems to Human Impact: Problems and Perspectives for Restoration. Science of the Total Environment Supplement 1992. Elsevier Scientific, Amsterdam, The Netherlands

    Google Scholar 

  • Vollenweider RA, Rinaldi A, Montanari G (1992): Eutrophication, structure and dynamics of a marine coastal system: results of a ten-year monitoring along the Emilia-Romagna coast (Northwest Adriatic Sea), p 63–105. In: RA Vollenweider, R Marchetti, and R Viviani, Eds, Marine Coastal Eutrophication. The Response of Marine Transitional Systems to Human Impact: Problems and Perspectives for Restoration. Science of the Total Environment Supplement 1992. Elsevier Scientific, Amsterdam, The Netherlands

    Google Scholar 

  • Vyhnálek V, Fott J, Kopáček J (1994): Chlorophyll-phosphorus relationship in acidified lakes of the High Tatra Mountains (Slovakia). Hydrobiologia 274, 171–177

    Article  Google Scholar 

  • Welch EB, Quinn JM, Hickey CW (1992): Periphyton biomass to point-source nutrient enrichment in seven New Zealand streams. Water Research 26, 669–675

    Article  CAS  Google Scholar 

  • Willén E (2000): Phytoplankton in water quality assessment—An indicator concept, p 57–80. In: P Heinonen, Z Giuliano, and A Van der Beken, Eds, Hydrological and Limnological Aspects of Lake Monitoring. Wiley and Sons, Ltd, West Sussex, England

    Google Scholar 

  • Willén E, Ahlgren G, Söderhielm A-C (2000): Toxic cyanophytes in three Swedish lakes. Verh Int Ver Theor Angew Limnol 27, 560–564

    Google Scholar 

  • Wilson JG, Ed (1998): Eutrophication in Irish waters. Royal Irish Academy, Dublin, Ireland

    Google Scholar 

  • Winter JG, Duthie HC (2000): Epilithic diatoms as indicators of stream total N and total P concentrations. J N Amer Benthol Soc 19, 32–49

    Article  Google Scholar 

  • Wolff WJ (1993): Netherlands-Wetlands. Hydrobiologia 265, 1–14

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, V.H. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environ Sci & Pollut Res 10, 126–139 (2003). https://doi.org/10.1065/espr2002.12.142

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1065/espr2002.12.142

Keywords

Navigation