Skip to main content

Advertisement

Log in

Assessment of land use impacts on the natural environment

Part 2: Generic characterization factors for local species diversity in Central Europe

  • Land Use in LCA (Subject Editor: Llorenç Milà i Canals)
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Goal, Scope and Background

Land use is an economic activity that generates large benefits for human society. One side effect, however, is that it has caused many environmental problems throughout history and still does today. Biodiversity, in particular, has been negatively influenced by intensive agriculture, forestry and the increase in urban areas and infrastructure. Integrated assessment such as Life Cycle Assessment (LCA), thus, incorporate impacts on biodiversity. The main objective of this paper is to develop generic characterization factors for land use types using empirical information on species diversity from Central Europe, which can be used in the assessment method developed in the first part of this series of paper.

Methods

Based on an extensive meta-analysis, with information about species diversity on 5581 sample plots, we calculated characterization factors for 53 land use types and six intensity classes. The typology is based on the CORINE Plus classification. We took information on the standardized α-diversity of plants, moss and mollusks into account. In addition, threatened plants were considered. Linear and nonlinear models were used for the calculation of damage potentials (EDP S). In our approach, we use the current mean species number in the region as a reference, because this determines whether specific land use types hold more or less species diversity per area. The damage potential calculated here is endpoint oriented. The corresponding characterization factors EDP S can be used in the Life Cycle Impact Assessment as weighting factors for different types of land occupation and land use change as described in Part 1 of this paper series.

Results

The result from ranking the intensity classes based on the mean plant species number is as expected. High intensive forestry and agriculture exhibit the lowest species richness (5.7–5.8 plant species/m2), artificial surfaces, low intensity forestry and non-use have medium species richness (9.4–11.1 plant species/m2) and low-intensity agriculture has the highest species richness (16.6 plant species/m2). The mean and median are very close, indicating that the skewedness of the distribution is low. Standard error is low and is similar for all intensity classes. Linear transformations of the relative species numbers are linearly transformed into ecosystem damage potentials (EDP S linear ). The integration of threatened plant species diversity into a more differentiated damage function \(EDP_{linear}^{S_{total} } \) makes it possible to differentiate between land use types that have similar total species numbers, but intensities of land use that are clearly different (e.g., artificial meadow and broad-leafed forest). Negative impact values indicate that land use types hold more species per m2 than the reference does. In terms of species diversity, these land use types are superior (e.g. near-to-nature meadow, hedgerows, agricultural fallow).

Discussion

Land use has severe impacts on the environment. The ecosystem damage potential EDP S is based on assessment of impacts of land use on species diversity. We clearly base EDP S factors on α-diversity, which correlates with the local aspect of species diversity of land use types. Based on an extensive meta-analysis of biologists’ field research, we were able to include data on the diversity of plant species, threatened plant species, moss and mollusks in the EDP S. The integration of other animal species groups (e.g. insects, birds, mammals, amphibians) with their specific habitat preferences could change the characterization factors values specific for each land use type. Those mobile species groups support ecosystem functions, because they provide functional links between habitats in the landscape.

Conclusions

The use of generic characterization factors in Life Cycle Impact Assessment of land use, which we have developed, can improve the basis for decision-making in industry and other organizations. It can best be applied for marginal land use decisions. However, if the goal and scope of an LCA requires it this generic assessment can be complemented with a site-dependent assessment.

Recommendations and Perspectives

We recommend utilizing the developed characterization factors for land use in Central Europe and as a reference methodology for other regions. In order to assess the impacts of land use in other regions it would be necessary to sample empirical data on species diversity and to develop region specific characterization factors on a worldwide basis in LCA. This is because species diversity and the impact of land use on it can very much differ from region to region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam M (1995): Die Übergangszone von Buchen-und Fichtenwald in den nördlichen Kalkalpen — Klimatische, edaphische und vegetationskundliche Aspekte: Dargestellt am Beispiel des Tamina-und Calfeisentales (SG/GR). Cramer, Berlin

    Google Scholar 

  • Alard D, Podevigne I (2000): Diversity patterns in grassland along a landscape gradient in northwestern France. Journal of Vegetation Science 11, 287–294

    Article  Google Scholar 

  • Albracht R (1997): Zur Variabilität des Arteninventares verschiedener Bereiche von Fussballrasen, Golfplätzen und Mähweiden. Fachbereich Agrarwissenschaften und Umweltsicherung. University Gießen, Gießen

    Google Scholar 

  • Archibald EEA (1949): The species character of plant communities. II. A quantitative approach. Journal of Ecology 37, 260–274

    Article  Google Scholar 

  • Arrhenius O (1921): Species and area. Journal of Ecology 9, 95–99

    Article  Google Scholar 

  • Balvanera P, Lott E, Segura G, Siebe C, Islas A (2002): Patterns of bdiversity in a Mexican tropical dry forest. Journal of Vegetation Science 13, 145–158

    Article  Google Scholar 

  • Barthlott W (1998): The uneven distribution of global biodiversity: A challenge for industrial and developing countries. In: Ehlers E, Krafft T (eds), German Global Change Research 1998. German National Committee on Global Change Research, Bonn, 36 pp

    Google Scholar 

  • Barthlott W, Biedinger N, Braun G, Feig F, Kier G, Mutke J (1999): Terminological and methodological aspects of the mapping and analysis of the global biodiversity. Acta Botica Fennica 162, 103–110

    Google Scholar 

  • BDM (2004): Biodiversity Monitoring Switzerland. Indicator Z9: Species Diversity in Habitats 〈www.biodiversitymonitoring.ch〉. BUWAL (Bundesamt für Umwelt, Wald und Landschaft), Bern

    Google Scholar 

  • Bigler F, Jeanneret P, Lips A, Schüpbach B, Waldburger M, Fried P (1998): Wirkungskontrolle der Öko-Massnahmen: Biologische Vielfalt. Agrarforschung 5, 379–382

    Google Scholar 

  • Bruelheide H (1995): Die Grünlandgesellschaften des Harzes und ihre Standortbedingungen. Mit einem Beitrag zum Gliederungsprinzip auf der Basis von statistisch ermittelten Artengruppen. Cramer, Berlin, Stuttgart

    Google Scholar 

  • BUWAL (2002): Rote Liste der gefährdeten Farn-und Blütenpflanzen der Schweiz. BUWAL (Swiss Agency for the Environment, Forests and Landscape), Bern

    Google Scholar 

  • Callauch R (1981): Ackerunkraut-Gesellschaften auf biologischen und konventionellen Äckern in der weiteren Umgebung von Göttingen. Tuexenia. Mitteilungen der Floristisch-soziologischen Arbeitsgemeinschaft 1, 25–37

    Google Scholar 

  • Cowell S (1998): Environmental Life Cycle Assessment of Agricultural Systems: Integration into Decision-Making. Centre of Environmental Strategy. University Surrey, Surrey

    Google Scholar 

  • Daily GC (ed) (1997): Nature’s Services. Societal Dependence on Natural Ecosystems. Island Press, Washington, DC, Covelo, California

    Google Scholar 

  • Döring-Mederake U (1991): Feuchtwälder im nordwestdeutschen Tiefland. Gliederung — Ökologie — Schutz. Erich Goltze, Göttingen

    Google Scholar 

  • Duelli P, Obrist MK (1998): In search of the best correlates for local organismal biodiversity in cultivated areas. Biodiversity and Conservation 7, 297–309

    Article  Google Scholar 

  • Ehrlich PR, Ehrlich AH (1981): Extinction. The causes and consequences of the disappearance of species. Random House, New York

    Google Scholar 

  • European Environmental Agency (2000): CORINE Land Cover. European Environmental Agency, Luxembourg

    Google Scholar 

  • Ewald J (1997): Die Bergmischwälder der Bayerischen Alpen: Soziologie, Standortbindung und Verbreitung. Cramer, Berlin

    Google Scholar 

  • Fahrig L, Jonsen I (1998): Effect of habitat patch characteristics on abundance and diversity of insects in an agricultural landscape. Ecosystems 1, 197–205

    Article  Google Scholar 

  • Flückiger PE (1999): Der Beitrag von Waldrandstrukturen zur regionalen Biodiversität. Dissertation, University Basel, Olten

    Google Scholar 

  • Giegrich J, Sturm K (1996): Operationalisierung der Wirkungskategorie Naturraumbeanspruchung. Institut für Energie und Umwelt (IFEU), Heidelberg

    Google Scholar 

  • Gleason HA (1922): On the relation between species and area. Ecology 3, 158–162

    Article  Google Scholar 

  • Gleason HA (1925): Species and area. Ecology 6, 66–74

    Article  Google Scholar 

  • Goedkoop M, Hofstetter P, Müller-Wenk R, Spriensma R (1998): The Eco-Indicator 98 explained. Int J LCA 3, 352–360

    Google Scholar 

  • Goedkoop M, Spriensma R (1999): The Eco-Indicator 99. A Damage Oriented Method for Life Cycle Impact Assessment. Methodology Report. Ministerie van Volkshuisvesting, Den Haag

    Google Scholar 

  • Grüttner A (1990): Die Pflanzengesellschaften und Vegetationskomplexe der Moore des westlichen Bodenseegebietes. Cramer, Berlin, Stuttgart

    Google Scholar 

  • He F, Legendre P (1996): On species-area relations. American Naturalist 148, 719–737

    Article  Google Scholar 

  • Heck KL, van Belle G, Simberloff D (1975): Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 1459–1461

    Article  Google Scholar 

  • Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Högberg P, Huss-Danell K, Joshi J, Jumpponen A, Körner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O’Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze E-D, Siamantziouras D, Spehn EM, Terry AC, Troumbis AJ, Woodward FI, Yachi S, Lawton HJ (1999): Plant diversity and productivity experiments in European grasslands. Science 286, 1123–1127

    Article  CAS  Google Scholar 

  • Heijungs R, Guinée J, Huppes G (1997): Impact Categories for Natural Resources and Land Use. Centre of Environmental Science (CML), Leiden

    Google Scholar 

  • Hurlbert SH (1971): The nonconcept of species diversity: A critique and alternative parameters. Ecology 52, 577–586

    Article  Google Scholar 

  • IUCN (2001): IUCN Red List. Categories and Criteria. Version 3.1. IUCN Species Survival Commission, Gland, Switzerland and Cambridge, UK

    Google Scholar 

  • Kisteneich S (1993): Die auenbegleitenden Schwarzerlen-und Stieleichen-Hainbuchenwälder des Bergischen Landes. Cramer, Berlin

    Google Scholar 

  • Koellner T (2000): Species-pool effect potentials (SPEP) as a yardstick to evaluate land use impacts on biodiversity. J Cl Prod 8, 293–311

    Article  Google Scholar 

  • Koellner T (2003): Land Use in Product Life Cycles and Ecosystem Quality. Peter Lang, Bern, Frankfurt a. M., New York

    Google Scholar 

  • Koellner T, Hersperger A, Wohlgemuth T (2004): Rarefaction method for assessing plant species diversity on a regional scale. Ecography 27, 532–544

    Article  Google Scholar 

  • Koellner T, Scholz RW (2007): Assessment of land use impacts on the natural environment. Part 1: An analytical framework for pure land occupation and land use change. Int J LCA 12(1) 16–23

    Google Scholar 

  • Lawton JH (1996): The role of species in ecosystems: aspects of ecological complexity and biological diversity. In: Abe T, Levin SA, Higashi M (eds), Biodiversity. An ecological perspective. Springer, New York

    Google Scholar 

  • Levin SA (2000): Multiple scales and the maintenance of biodiversity. Ecosystems 3, 498–506

    Article  Google Scholar 

  • Lindeijer E, van Kampen M, Fraanje P, van Dobben H, Nabuurs GJ, Schouwenberg E, Prins D, Dankers N (1998): Biodiversity and Life Support Indicators for Land Use Impacts in LCA. IVAM ER, IBNDLO, Wageningen, Texel

    Google Scholar 

  • Lindeijer E (2000): Biodiversity and life support impacts of land use in LCA. J Cl Prod 8, 313–319

    Article  Google Scholar 

  • Lips A, Dubois D et al. (1997): Belebte Umwelt. In: Wolfensberger U, Dinkel F (eds), Beurteilung nachwachsender Rohstoffe in der Schweiz in den Jahren 1993–1996. Vergleichende Betrachtung von Produkten aus ausgewählten NWR und entsprechenden konventionellen Produkten bezüglich ihrer Umweltwirkungen und Wirtschaftlichkeit. FAT Carbotech, Tänikon, Basel

    Google Scholar 

  • Lundberg J, Moberg F (2003): Mobile link organisms and ecosystem functioning: Implications for ecosystem resilience and management. Ecosystems 6, 87–98

    Article  Google Scholar 

  • MacArthur RH (1965): Patterns of species diversity. Biol. Rev. 40, 510–533

    Article  Google Scholar 

  • Magurran AE (1996): Ecological Diversity and its Measurement. Chapman & Hall, London

    Google Scholar 

  • Manz E (1997): Vegetation ehemals militärisch genutzter Übungsplätze und Flugplätze und deren Bedeutung für den Naturschutz. Tuexenia 17, 173–192

    Google Scholar 

  • Milà i Canals L, Bauer C, Depestele J, Dubreuil A, Freiermuth Knuchel R, Gaillard G, Michelsen O, Müller-Wenk R, Rydgren B (2007): Key elements in a framework for land use impact assessment within LCA. Int J LCA 12(1) 5–15

    Article  Google Scholar 

  • Müller-Wenk R (1998): Land Use — The Main Threat to Species. How to Include Land Use in LCA. Institute for Economy and the Environment (IWÖ), University St. Gallen, St. Gallen

    Google Scholar 

  • Murmann-Kristen L (1987): Das Vegetationsmosaik im Nordschwarzwälder Waldgebiet. Cramer, Berlin

    Google Scholar 

  • Naeem S, Li S (1997): Biodiversity enhances ecosystem reliability. Nature 390, 507–509

    Article  CAS  Google Scholar 

  • Palmer MW (1990): The estimation of species richness by extrapolation. Ecology 71, 1195–1198

    Article  Google Scholar 

  • Peterson G, Allen CR, Holling CS (1998): Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18

    Article  Google Scholar 

  • Reidl K (1989): Floristische und vegetationskundliche Untersuchungen als Grundlage für den Arten-und Biotopschutz in der Stadt — dargestellt am Beispiel Essen. GHS Essen, Essen

    Google Scholar 

  • Ricotta C, Carranza ML, Avena G (2002): Computing β-diversity from species area curves. Basic and Applied Ecology 3, 15–18

    Article  Google Scholar 

  • Schenck R (2001): Land Use and Biodiversity Indicators for Life Cycle Impact Assessment. Int J LCA 6, 114–117

    Google Scholar 

  • Schläpfer F, Schmid B (1999): Expert estimates about effects of biodiversity on ecosystems processes and services. OIKOS 84, 346–352

    Article  Google Scholar 

  • Schreiber C (1995): Vergleich der Artenvielfalt von konventionellen-, IP-und Biobetrieben (auf verschiedenen Unterlagen in der kollinensubmontanen Stufe) im westlichen Aargauer Mittelland. Geobotanisches Institut und Institut für Agrarwirtschaft. ETH Zürich, Zürich

    Google Scholar 

  • Schulte W (1985): Florenanalyse und Raumbewertung im Bochumer Stadtbereich. Geographisches Institut der Ruhr-Universität Bochum, Bochum

    Google Scholar 

  • Schulze ED, Mooney HA (1994): Ecosystem function of biodiversity. A summary. In: Schulze ED, Mooney HA (eds), Biodiversity and ecosystem function. Springer, Berlin, New York, 525 pp

    Google Scholar 

  • Shannon C (1948): A mathematical theory of communication. Bell Systems Technical Journal 27, 379–423

    Google Scholar 

  • Simberloff DS (1978): Use of rarefaction and related methods in ecology. Pages 150–165 in Dickson J Cairns KL, Jr., Livingston RJ, eds. Biological Data in Water Pollution Assessment: Quantitative and Statistical Analysis. American Society for Testing and Materials, Philadelphia

    Google Scholar 

  • Simpson EH (1949): Measurement of diversity. Nature 163, 688

    Article  Google Scholar 

  • Sukopp H (ed) (1990): Stadtökologie. Das Beispiel Berlin. Dietrich Reimer, Berlin

    Google Scholar 

  • Udo de Haes H, Jolliet O, Finnveden G, Hausschild M, Krewitt W, Müller-Wenk R (1999): Best available practice regarding impact categories and category indicators in Life Cycle Impact Assessment. Background document for the second working group on Life Cycle Impact Assessment of SETAC-Europe (WIA-2) Part A. Int J LCA 4, 66–74

    Google Scholar 

  • Udo de Haes HA. (2006): How to approach land use in LCIA or, how to avoid the Cinderella effect? Comments on ‘Key Elements in a Framework for Land Use Impact Assessment Within LCA’. Int J LCA 11, 219–221

    Google Scholar 

  • UNEP (1992): Convention on Biological Diversity. United Nations Environment Programme (UNEP), Nairobi, Kenya

    Google Scholar 

  • Vogtländer JG, Lindeijer E, Witte J-PM, Hendriks C (2004): Characterizing the change of land use based on flora: Application for EIA and LCA. J Cl Prod 12, 47–57

    Article  Google Scholar 

  • von Oheimb G (2003): Einfluss forstlicher Nutzung auf die Artenvielfalt und Artenzusammensetzung der Gefässpflanzen in norddeutschen Laubwäldern. Kovac, Hamburg

    Google Scholar 

  • Werner F, Scholz RW. (2002): Ambiguities in decision-oriented life cycle inventories. The role of mental models. Int J LCA 7, 330–338

    Google Scholar 

  • Whittaker RH (1972): Evolution and measurement of species diversity. Taxon 21, 213–251

    Article  Google Scholar 

  • Whittaker RJ, Willis KJ, Field R (2001): Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28, 453–470

    Article  Google Scholar 

  • Wiertz van Dijk J, Latour JB (1992): MOVE: Vegetatie-module; de kans op voorlomen van 700 plantsoorten als functie van vocht, pH, nutienten en zout. RIVM, Bilthoven

    Google Scholar 

  • Wittwer A, Meier R, Bolliger P, Wittwer J, Thomet P, Thomet E, Beyeler H (1997): Ökologischer Ausgleich. Erste Erfolgskontrollen in drei Regionen aus der Sicht der Förderung der Artenvielfalt. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern

    Google Scholar 

  • Wohlgemuth T (1992): Die vegetationskundliche Datenbank. Schweiz Z Forstwes 143, 22–36

    Google Scholar 

  • Wohlgemuth T (1998): Modelling floristic species richness on a regional scale: A case study in Switzerland. Biodiversity and Conservation 7, 159–177

    Article  Google Scholar 

  • WSL/FNP. (without year): EDV-Flora der Schweiz 1.0. Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft (WSL/FNP), Birmensdorf

  • Zerbe S (1999): Die Wald-und Forstgesellschaften des Spessarts mit Vorschlägen zu deren zukünftigen Entwicklung, Aschaffenburg

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Koellner.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koellner, T., Scholz, R.W. Assessment of land use impacts on the natural environment. Int J Life Cycle Assess 13, 32–48 (2008). https://doi.org/10.1065/lca2006.12.292.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1065/lca2006.12.292.2

Keywords

Navigation