Skip to main content
Log in

Changes in the Column Content and Vertical Distribution of NO2 According to the Results of 30-Year Measurements at the Zvenigorod Scientific Station of the A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences

  • Published:
Izvestiya, Atmospheric and Oceanic Physics Aims and scope Submit manuscript

Abstract

The results of an analysis of variations and linear trends in the column content and vertical distribution of NO2 are presented based on 30-year spectrometric measurements at Zvenigorod Scientific Station, A.M. Obukhov Institute of Atmospheric Physics, located in the western Moscow region. In particular, we derive seasonally dependent estimates of NO2 trends and relationships of NO2 with the quasi-biennial oscillation, the North Atlantic Oscillation, the El Niño–Southern Oscillation, and the 11-year cycle of solar activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. G. P. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere (Springer, Dordrecht, 2005).

    Book  Google Scholar 

  2. J. Pyle, Th. Shepherd, G. Bodeker, P. Canciani, M. Dameris, P. Forster, A. Gruzdev, R. Müller, N. J. Muthama, G. Pitari, W. Randel, “Ozone and climate: A review of interconnections,” in Safeguarding the Ozone Layer and the Global Climate System. Issues Related to Hydrofluorocarbons and Perfluorocatbons. IPCC Special Report (IPCC, 2005), pp. 83–132.

    Google Scholar 

  3. T. E. Gradeel and J. P. Crutzen, Atmospheric Change. An Earth System Perspective (W.H. Freeman and Company, New York, 1993).

    Google Scholar 

  4. G. P. Brasseur, J. J. Orlando, and G. S. Tyndall, New York (Oxford University Press, New York, 1999).

    Google Scholar 

  5. A. N. Gruzdev, E. P. Kropotkina, S. V. Solomonov, and A. S. Elokhov, “Anomalies of the ozone and nitrogen dioxide contents in the stratosphere over Moscow region as a manifestation of the dynamics of the stratospheric polar vortex,” Dokl. Earth Sci. 468 (4), 602–606 (2016).

    Article  Google Scholar 

  6. A. W. Brewer, C. T. McElroy, and J. J. Kerr, “Nitrogen dioxide concentrations in the atmosphere,” Nature 246, 129–133 (1973).

    Article  Google Scholar 

  7. J. F. Noxon, “Nitrogen dioxide in the stratosphere and troposphere measured by ground-based absorption spectroscopy,” Science 189, 547–549 (1975).

    Article  Google Scholar 

  8. G. I. Kuznetsov and K. S. Nigmatullina, “Determination of nitrogen dioxide content in the atmosphere using optical methods,” Izv. Akad. Nauk SSSR: Fiz. Atmos. Okeana 13 (8), 896–899 (1977).

    Google Scholar 

  9. A. N. Borovskii, A. Ya. Arabov, G. S. Golitsyn, A. N. Gruzdev, N. F. Elanskii, A. S. Elokhov, I. I. Mokhov, V. V. Savinykh, I. A. Senik, and A. V. Timazhev, “Variations of total nitrogen oxide content in the atmosphere over the North Caucasus,” Russ. Meteorol. Hydrol. 41 (2), 93–103 (2016).

    Article  Google Scholar 

  10. A. S. Elokhov and A. N. Gruzdev, “Nitrogen dioxide column content and vertical profile measurements at the Zvenigorod Research Station,” Izv., Atmos. Ocean. Phys. 36 (6), 763–777 (2000).

    Google Scholar 

  11. J. B. Liley, P. V. Johnston, R. L. McKenzie, A. J. Thomas, and I. S. Boyd, “Stratospheric NO2 variations from at Lauder, New Zealand,” J. Geophys. Res. 105 (D9), 11633–11640 (2000).

    Article  Google Scholar 

  12. J. M. Zawodny and M. P. McCormick, “Stratospheric Aerosol and Gas Experiment-II measurements of the quasi-biennial oscillations in ozone and nitrogen dioxide,” J. Geophys. Res 96 (D5), 9371–9377 (1991).

    Article  Google Scholar 

  13. A. N. Gruzdev, “Quasi-biennial variations in the total NO2 content,” Dokl. Earth Sci. 438 (5), 837–841 (2011).

    Article  Google Scholar 

  14. V. Yu. Ageyeva and A. N. Gruzdev, “Seasonal features of quasi-biennial variations of NO2 stratospheric content derived from ground-based measurements,” Izv., Atmos. Ocean. Phys. 53 (1), 65–75 (2017).

    Article  Google Scholar 

  15. P. A. Cook and H. K. Roscoe, “Variability and trends in stratospheric NO2 in Antarctic summer, and implications for stratospheric NOy,” Atmos. Chem. Phys. 9, 2601–3612 (2009).

    Article  Google Scholar 

  16. A. N. Gruzdev, “Accounting for autocorrelation in the linear regression problem by an example of analysis of the atmospheric column NO2 content,” Izv., Atmos. Ocean. Phys. 55 (1), 65–72 (2019).

    Article  Google Scholar 

  17. L. L. Hood and B. E. Soukharev, “Solar induced variations of odd nitrogen: Multiple regression analysis of UARS HALOE data,” Geophys. Res. Lett. 33, L22805 (2006).

    Article  Google Scholar 

  18. A. N. Gruzdev, “Latitudinal dependence of variations in stratospheric NO2 content,” Izv., Atmos. Ocean. Phys. 44 (3), 319–333 (2008).

    Article  Google Scholar 

  19. A. N. Gruzdev, “Latitudinal structure of variations and trends in stratospheric NO2,” Int. J. Remote Sens. 30 (15), 4227–4246 (2009).

    Article  Google Scholar 

  20. E. Kyrölä, J. Tamminen, V. Sofieva, et al., “GOMOS O3, NO2, and NO3 observations in 2002–2008,” Atmos. Chem. Phys. 10 (16), 7723–7738 (2010).

    Article  Google Scholar 

  21. P. V. Johnston, R. L. McKenzie, J. G. Keys, and W. A. Matthews, “Observations of depleted stratospheric NO2 following the Pinatubo volcanic eruption,” Geophys. Res. Lett. 19 (2), 211–213 (1992).

    Article  Google Scholar 

  22. S. Solomon, R. W. Sanders, R. O. Jakoubek, K. H. Arpag, S. L. Stephens, J. G. Keys, and R. R. Garcia, “Visible and near-ultraviolet spectroscopy at McMurdo Station, Antarctica. 10. Reductions of stratospheric NO2 due to Pinatubo serosols 1994,” J. Geophys. Res. 99 (2), 3509–3516 (1994).

    Article  Google Scholar 

  23. M. van Roozendael, C. Hermans, M. de Mazière, and P. C. Simon, “Stratospheric NO2 observations at the Jungfraujoch station between June 1990 and May 1992,” Geophys. Res. Lett. 21 (13), 1383–1386 (1994).

    Article  Google Scholar 

  24. A. S. Elokhov and A. N. Gruzdev, “Estimation of tropospheric and stratospheric NO2 from spectrometric measurements of column NO2 abundances,” Proc. SPIE 2506, 444–454 (1995).

    Article  Google Scholar 

  25. A. S. Elokhov and A. N. Gruzdev, “Measurements of column contents and vertical distribution of NO2 at Zvenigorod Scientific Station,” Proc. SPIE 3583, 547–554 (1998).

    Article  Google Scholar 

  26. A. N. Gruzdev, “Estimate of the effects of Pinatubo eruption in stratospheric O3 and NO2 contents taking into account the variations in the solar activity,” Atmos. Oceanic Opt. 27 (6), 403–411 (2014).

    Article  Google Scholar 

  27. W. J. Randel, F. Wu, J. M. Russell, and J. Waters, “Space–time patterns of trends in stratospheric constituents derived from UARS measurements,” J. Geophys. Res. 104 (D3), 3711–3727 (1999).

    Article  Google Scholar 

  28. F. Hendrick, E. Mahieu, G. E. Bodeker, et al., “Analysis of stratospheric NO2 trends above Jungfraujoch using ground-based UV-visible, FTIR, and satellite nadir observations,” Atmos. Chem. Phys. 12, 8851–8864 (2012).

    Article  Google Scholar 

  29. M. Yela, M. Gil-Ojeda, M. Navarro-Comas, et al., “Hemispheric asymmetry in stratospheric NO2 trends,” Atmos. Chem. Phys. 17, 13373–13389 (2017).

    Article  Google Scholar 

  30. A. N. Gruzdev and A. S. Elokhov, “Validation of ozone monitoring instrument NO2 measurements using ground based NO2 measurements at Zvenigorod, Russia,” Int. J. Remote Sens. 31 (2), 497–511 (2010).

    Article  Google Scholar 

  31. A. N. Gruzdev and A. S. Elokhov, “Variability of stratospheric and tropospheric nitrogen dioxide observed by visible spectrophotometer at Zvenigorod, Russia,” Int. J. Remote Sens. 32 (11), 3115–3127 (2011).

    Article  Google Scholar 

  32. A. N. Gruzdev and A. S. Elokhov, “Validating NO2 measurements in the vertical atmospheric column with the OMI instrument aboard the EOS Aura satellite against ground-based measurements at the Zvenigorod Scientific Station,” Atmos. Ocean. Phys. 45 (4), 444–455 (2009).

    Article  Google Scholar 

  33. A. N. Gruzdev and A. S. Elokhov, “New results from the validation of NO2 content measurement data obtained with the help of OMI instrument from measurement data of the Zvenigorod Scientific Station,” Issled. Zemli Kosmosa, No. 1, 16–27 (2013).

    Google Scholar 

  34. S. M. Kay and S. L. Marple, “Spectrum analysis–A modern perspective,” Proc. IEEE 69 (11), 1380–1419 (1981).

    Article  Google Scholar 

  35. A. N. Gruzdev, “Estimate of the effect of the 11-year solar activity cycle on the ozone content in the stratosphere,” Geomagn. Aeron. (Engl. Transl.) 54 (5), 633–639 (2014).

  36. G. E. Bodeker, I. S. Boyd, and W. A. Matthews, “Trends and variability in vertical ozone and temperature profiles measured by ozonesondes at Lauder, New Zealand: 1986–1996,” J. Geophys. Res. 103 (D22), 28661–28681 (1998).

    Article  Google Scholar 

  37. N. R. P. Harris, B. Hassler, F. Tummon, et al., “Past changes in the vertical distribution of ozone. Part 3: Analysis and interpretation of trends,” Atmos. Chem. Phys. 15, 9965–9982 (2015).

    Article  Google Scholar 

  38. A. N. Gruzdev, “Accounting for long-term serial correlation in a linear regression problem,” IOP Conf. Ser. Earth Environ. Sci. 231, 1–10 (2019). https://iopscience.iop. org/article/10.1088/1755-1315/231/1/012020/meta.

  39. C. A. McLinden, S. C. Olsen, M. J. Prather, and J. B. Liley, “Understanding trends in stratospheric NOy and NO2,” J. Geophys. Res. 106 (D21), 27787–27793 (2001).

    Article  Google Scholar 

  40. A. N. Gruzdev, “Sensitivity of stratospheric ozone to long-term changes in nitrogen oxide and hydrogen chloride,” Dokl. Earth Sci. 427 (3), 975–978 (2009).

    Article  Google Scholar 

  41. A. Hilboll, A. Richter, and J. P. Burrows, “Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments,” Atmos. Chem. Phys. 13, 4145–4169 (2013).

    Article  Google Scholar 

  42. P. Schneider, W. A. Lahoz, and R. van der A, “Recent satellite-based trends of tropospheric nitrogen dioxide over large urban agglomerations worldwide,” Atmos. Chem. Phys. 15, 1205–1220 (2015).

    Article  Google Scholar 

  43. M. H. P. Ambaum and B. J. Hoskins, “The NAO troposphere–stratosphere connection,” J. Clim. 15, 19679–1978 (2002).

    Google Scholar 

  44. J. F. Noxon, “Stratospheric NO2. 2. Global behavior,” J. Geophys. Res. 84 (C8), 5067–5076 (1979).

    Article  Google Scholar 

  45. A. N. Gruzdev, E. P. Kropotkina, S. V. Solomonov, and A. S. Elokhov, “Winter–spring anomalies in stratospheric O3 and NO2 contents over the Moscow region in 2010 and 2011,” Izv., Atmos. Ocean. Phys. 53 (2), 195–203 (2017).

    Article  Google Scholar 

  46. V. Yu. Ageyeva, A. N. Gruzdev, A. S. Elokhov, I. I. Mokhov, and N. E. Zueva, “Sudden stratospheric warmings: statistical characteristics and influence on NO2 and O3 total contents,” Atmos. Ocean. Phys. 53 (5), 477–486 (2017).

    Article  Google Scholar 

  47. D. V. Domeisen, C. I. Garfinkel, and A. H. Butler, “The teleconnection of El Niño Southern Oscillation to the stratosphere,” Rev. Geophys. 57, 5–47 (2019).

    Article  Google Scholar 

  48. K. Song and S.-W. Son, “Revisiting the ENSO–SSW relationship,” J. Clim. 31, 2133–2143 (2018).

    Article  Google Scholar 

  49. M. Iza, N. Calvo, and E. Manzini, “The stratospheric pathway of La Niña,” J. Clim. 29, 8899–8914 (2016).

    Article  Google Scholar 

  50. C. P. Rinsland, M. R. Gunson, M. C. Abrams, L. L. Lowes, R. Zander, E. Mahieu, A. Goldman, M. K. W. Ko, J. M. Rodriguez, and N. D. Sze, “Heterogeneous conversion of N2O5 to HNO3 in the post-Mount Pinatubo eruption stratosphere,” J. Geophys. Res. 99 (D4), 8213–8219 (1994).

    Article  Google Scholar 

  51. M. Koike, N. B. Jones, W. A. Matthews, P. V. Johnston, R. L. McKenzie, D. Kinnison, and J. Rodriguez, “Impact of Pinatubo aerosols on the partitioning between NO2 and HNO3,” Geophys. Res. Lett. 21 (7), 597–600 (1994).

    Article  Google Scholar 

  52. J. J. Bauman, P. B. Russell, M. A. Geller, and P. Hamill, “A stratospheric aerosol climatology from SAGE II and CLAES measurements: 2. Results and comparison, 1984–1999,” J. Geophys. Res. 108 (D13), 4383 (2003).

    Google Scholar 

  53. A. N. Gruzdev, V. Yu. Ageyeva, and A. S. Elokhov, “Changes in vertical distribution and column content of NO2 under the influence of sudden stratospheric warmings,” Izv., Atmos. Ocean. Phys. 54 (4), 354–363 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The measurement data of the column content of NO2 and the NO2 content in the surface layer of the atmosphere are archived by the NDACC. The data of the F10.7 solar activity index are freely provided by the NOAA National Center for Environmental Information and Natural Resources, Canada. The data of the zonal velocity of equatorial stratospheric wind are prepared by the Free University of Berlin (Freie Universität Berlin). The Niño3.4 index is provided by the NOAA Physical Science Laboratory. The NAO index data are provided by the Climatic Research Unit, University of East Anglia. The data of the aerosol optical depth were prepared by the NASA Goddard Institute for Space Studies.

We are grateful to a reviewer and the member of the editorial board for helpful comments.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-05-00274.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Gruzdev.

Additional information

Translated by A. Nikol’skii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gruzdev, A.N., Elokhov, A.S. Changes in the Column Content and Vertical Distribution of NO2 According to the Results of 30-Year Measurements at the Zvenigorod Scientific Station of the A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences. Izv. Atmos. Ocean. Phys. 57, 91–103 (2021). https://doi.org/10.1134/S0001433821010084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001433821010084

Keywords:

Navigation