Skip to main content
Log in

Lagrangian Manifolds and Efficient Short-Wave Asymptotics in a Neighborhood of a Caustic Cusp

  • Research Articles
  • Published:
Mathematical Notes Aims and scope Submit manuscript

Abstract

We develop an approach to writing efficient short-wave asymptotics based on the representation of the Maslov canonical operator in a neighborhood of generic caustics in the form of special functions of a composite argument. A constructive method is proposed that allows expressing the canonical operator near a caustic cusp corresponding to the Lagrangian singularity of type \(A_3\) (standard cusp) in terms of the Pearcey function and its first derivatives. It is shown that, conversely, the representation of a Pearcey type integral via the canonical operator turns out to be a very simple way to obtain its asymptotics for large real values of the arguments in terms of Airy functions and WKB-type functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

Notes

  1. A polynomial with unit leading coefficient.

  2. Of course, this is some liberty of speech; here and below, in similar statements, we mean that the function can be extended by continuity at the points where the denominator vanishes, and so the extended function is smooth.

  3. We choose the plus sign to be definite.

  4. We would like to take the point \((0,0)\) for the central point, but since this point is singular, we move away from it by the infinitesimal distance \(-\delta\) in the variable \(x_2\).

  5. Special charts with more general coordinates in [4] are not needed here.

  6. The union \(U_1\cup\Gamma_{1l}\cup U_0\cup\Gamma_{1r}\cup U_3\), naturally identified with \(\mathscr R\), is not a nonsingular chart, because its projection onto the \(x\)-plane is not one-to-one onto the image.

References

  1. V. P. Maslov, Perturbation Theory and Asymptotic Methods (Izd. Mosk. Univ., Moscow, 1965) [in Russian].

    Google Scholar 

  2. V. P. Maslov and M. V. Fedoryuk, Semiclassical Approximation for Equations of Quantum Mechanics (Nauka, Moscow, 1976) [in Russian].

    MATH  Google Scholar 

  3. Wolfram Mathematica, www.wolfram.com.

  4. S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. I. Shafarevich, “New integral representations of the Maslov canonical operator in singular charts,” Izv. Math. 81 (2), 286–328 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  5. V. I. Arnol’d, A. N. Varchenko and S. M. Gusein-Zade, Singularities of Differentiable Mappings, Vol. 1: Classification of Critical Points, Caustics, and Wave Fronts (Nauka, Moscow, 1982) [in Russian].

    MATH  Google Scholar 

  6. V. P. Maslov, Asymptotic Methods and Perturbation Theory (Nauka, Moscow, 1988) [in Russian].

    MATH  Google Scholar 

  7. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Short-Wave Diffraction Problems : The Method of Canonical Problems (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  8. M. V. Fedoryuk, The Saddle-Point Method (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  9. V. A. Borovikov and B. E. Kinber, Geometrical Theory of Diffraction (Svyaz’, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  10. Yu. A. Kravtsov and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  11. M. V. Fedoryuk, Asymptotic Methods for Linear Ordinary Differential Equations (Nauka, Moscow, 1983) [in Russian].

    MATH  Google Scholar 

  12. A. S. Kryukovskii and D. S. Lukin, Boundary and Corner Catastrophes in Uniform Geometrical Theory of Diffraction (Mosk. Fiz.-Tekhn. Inst., Moscow, 1999) [in Russian].

    Google Scholar 

  13. T. Pearcey, “The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic,” Philos. Mag. (7) 37 (268), 311–317 (1946).

    Article  MathSciNet  Google Scholar 

  14. C. Chester, B. Friedman, and F. Ursell, “An extension of the method of steepest descents,” Proc. Cambridge Philos. Soc. 53 (3), 599–611 (1957).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Amer. 52 (2), 116–130 (1962).

    Article  MathSciNet  Google Scholar 

  16. D. Ludwig, “Uniform asymptotic expansions at a caustic,” Comm. Pure Appl. Math. 19, 215–250 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Bleistein, “Uniform asymptotic expansions of integrals with many nearby stationary points and algebraic singularities,” J. Math. Mech. 17, 533–559 (1967).

    MathSciNet  MATH  Google Scholar 

  18. F. Ursell, “Integrals with a large parameter. Several nearly coincident saddle points,” Proc. Cambridge Philos. Soc. 72 (1), 49–65 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  19. J. J. Duistermaat, “Oscillatory integrals, Lagrange immersions and unfolding of singularities,” Comm. Pure Appl. Math. 27, 207–281 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  20. M. V. Berry and F. J. Wright, “Phase-space projection identities for diffraction catastrophes,” J. Phys. A 13 (1), 149–160 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. N. L. Connor and D. Farrelly, “Theory of cusped rainbows in elastic scattering: uniform semiclassical calculations using Pearcey’s integral,” J. Chem. Phys. 75 (6), 2831–2846 (1981).

    Article  MathSciNet  Google Scholar 

  22. D. Kaminski, “Asymptotic expansion of the Pearcey integral near the caustic,” SIAM J. Math. Anal. 20 (4), 987–1005 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. B. Paris, “The asymptotic behaviour of Pearcey’s integral for complex variables,” Proc. Roy. Soc. London Ser. A 432, 391–426 (1991).

    MathSciNet  MATH  Google Scholar 

  24. M. V. Berry and C. J. Howls, “Unfolding the high orders of asymptotic expansions with coalescing saddles: singularity theory, crossover and duality,” Proc. Roy. Soc. London Ser. A 443, 107–126 (1993).

    MathSciNet  MATH  Google Scholar 

  25. M. V. Berry and C. J. Howls, “Overlapping Stokes smoothings: survival of the error function and canonical catastrophe integrals,” Proc. Roy. Soc. London Ser. A 444, 201–216 (1994).

    MathSciNet  MATH  Google Scholar 

  26. D. Kaminski and R. B. Paris, “On the zeroes of the Pearcey integral,” J. Comput. Appl. Math. 107 (1), 31–52 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  27. A. B. Olde Daalhuis, “On the asymptotics for late coeffcients in uniform asymptotic expansions of integrals with coalescing saddles,” Methods Appl. Anal. 7 (4), 727–745 (2000).

    MathSciNet  MATH  Google Scholar 

  28. F. W.J. Olver, Asymptotics and special functions (Academic, New York–London, 1990).

    MATH  Google Scholar 

  29. J. L. López and P. Pagola, The Pearcey Integral in the Highly Oscillatory Region, arXiv: 1511.05323v1 (2015).

    MATH  Google Scholar 

  30. J. L. López and P. Pagola, “Analytic formulas for the evaluation of the Pearcey integral,” Math. Comp. 86 (307), 2399–2407 (2016); arXiv: 1601.00361v1.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. V. Berry and C. J. Howls, “Integrals with Coalescing Saddles,” in NIST Handbook of Mathematical Functions (U.S. Dept. Commerce, Washington, DC, 2010), pp. 775–793.

    MathSciNet  Google Scholar 

  32. S. Yu. Dobrokhotov and V. E. Nazaikinskii, “Efficient formulas for the Maslov canonical operator near a simple caustic,” Russ. J. Math. Phys. 25 (4), 545–552 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  33. A. Yu. Anikin, S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. V. Tsvetkova, “Uniform asymptotic solution in the form of an Airy function for semiclassical bound states in one-dimensional and radially symmetric problems,” Theoret. and Math. Phys. 201 (3), 1742–1770 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  34. B. Malgrange, Ideals of differentiable functions (Oxford Univ. Press, Oxford, 1966).

    MATH  Google Scholar 

  35. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers (New York, McGraw-Hill, 1968).

    MATH  Google Scholar 

  36. S. Yu. Dobrokhotov, G. N. Makrakis, and V. E. Nazaikinskii, “Maslov’s canonical operator, Hörmander’s formula, and localization of the Berry–Balazs solution in the theory of wave beams,” Theoret. and Math. Phys. 180 (2), 894–916 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  37. V. A. Fock, “On the canonical transformation in classical and quantum mechanics,” Acta Phys. Acad. Sci. Hungaricae 27 (1–4), 219–224 (1969).

    Article  MathSciNet  Google Scholar 

  38. K. J. A. Reijnders, D. S. Minenkov, M. I. Katsnelson, and S. Yu. Dobrokhotov, “Electronic optics in graphene in the semiclassical approximation,” Ann. Phys. 397, 65–135 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  39. V. I. Arnol’d, “Characteristic class entering in quantization conditions,” Functional Anal. Appl. 1 (1), 1–13 (1967).

    Article  MATH  Google Scholar 

  40. V. P. Maslov, Operational Methods (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  41. S. Yu. Dobrokhotov and P. N. Zhevandrov, “Asymptotic expansions and the Maslov canonical operator in the linear theory of water waves. I. Main constructions and equations for surface gravity waves,” Russ. J. Math. Phys. 10 (1), 1–31 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  42. A. S. Mishchenko, B. Yu. Sternin, and V. E. Shatalov, Lagrangian Manifolds and the Canonical Operator Method (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  43. V. P. Maslov, Complex WKB Method for Nonlinear Equations (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  44. S. Yu. Dobrokhotov, V. E. Nazaikinskii, and A. A. Tolchennikov, “Uniform formulas for the asymptotic solution of a linear pseudo-differential equation for water waves generated by a localized source,” Russ. J. Math. Phys. 27 (2), 346–370 (2020).

    Article  MATH  Google Scholar 

Download references

Acknowledgments

The authors wish to express gratitude to A. V. Tsvetkova for valuable remarks.

Funding

This work was supported by the Russian Foundation for Basic Research under grant 17-01-00644.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Yu. Dobrokhotov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrokhotov, S.Y., Nazaikinskii, V.E. Lagrangian Manifolds and Efficient Short-Wave Asymptotics in a Neighborhood of a Caustic Cusp. Math Notes 108, 318–338 (2020). https://doi.org/10.1134/S0001434620090023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001434620090023

Keywords

Navigation