Skip to main content
Log in

Impact of Submesoscale Eddies on the Transport of Suspended Matter in the Coastal Zone of Crimea Based on Drone, Satellite, and In Situ Measurement Data

  • MARINE PHYSICS
  • Published:
Oceanology Aims and scope

Abstract

High-resolution measurements by unmanned aerial vehicles (UAVs), satellite and in-situ data are used to study the optical structure of coastal submesoscale eddies and their influence on the transport of total suspended matter (TSM). It is shown that submesoscale cyclones cause intense cross-shelf TSM fluxes and its subsequent accumulation in their cores, similar to what is observed in large mesoscale anticyclones. UAV measurements make it possible to observe intensive dynamic processes on the periphery of eddies, seen as a periodic structure with scales of 20–100 m; the spiral structure of TSM transport; and convergence of TSM in the cores of cyclones. Using UAV guidance, detailed measurements of the distribution of hydrological and hydro-optical characteristics of one of these eddies, with a diameter of about 2 km, were obtained during a scientific cruise in October 2019. Warm brackish water with a high TSM content and the descent of all isosurfaces were observed in the core of this cyclone, located near the topographic slope. We suggest that the probable reason for the convergence in such submesoscale cyclones is the interaction of radial currents with the topographic slope, which causes downwelling in the coastal part of eddies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. A. A. Aleskerova, A. A. Kubryakov, Yu. N. Goryachkin, et al., “Suspended-matter distribution near the western coast of Crimea under the impact of strong winds of various directions,” Izv., Atmos. Ocean. Phys. 55, 1138–1149 (2019). https://doi.org/10.1134/S0001433819090044

    Article  Google Scholar 

  2. A. A. Aleskerova, A. A. Kubryakov, and S. V. Stanichny, “Propagation of suspended matter under the influence of storm winds off the Western coast of Crimea by high-resolution optical data,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 12 (1), 63–71 (2015).

    Google Scholar 

  3. O. A. Atadzhanova, A. V. Zimin, E. I. Svergun, and A. A. Konik, “Submesoscale eddy structures and frontal dynamics in the Barents Sea,” Phys. Oceanogr. 25 (3), 220–228 (2018). https://doi.org/10.22449/1573-160X-2018-3-220-228

    Article  Google Scholar 

  4. Yu. N. Goryachkin and R. D. Kosyan, “Formation of a new island of the coast of Crimea,” Oceanology (Engl. Transl.) 60, 286–292 (2020).

  5. S. G. Demyshev and O. A. Dymova, “Numerical analysis of the mesoscale features of circulation in the Black Sea coastal zone,” Izv., Atmos. Ocean. Phys. 49, 603–610 (2013). https://doi.org/10.1134/S0001433813060030

    Article  Google Scholar 

  6. B. V. Divinsky, S. B. Kuklev, A. G. Zatsepin, and B. V. Chubarenko, “Simulation of submesoscale variability of currents in the Black Sea coastal zone,” Oceanology (Engl. Transl.) 55, 814–819 (2015). https://doi.org/10.1134/S000143701506003X

  7. D. N. Elkin and A. G. Zatsepin, “Laboratory study of a shear instability of an alongshore sea current,” Oceanology (Engl. Transl.) 54, 576–582 (2014). https://doi.org/10.1134/S000143701405004X

  8. V. B. Zalesnyi, A. V. Gusev, and V. I. Agoshkov, “Modeling Black Sea circulation with high resolution in the coastal zone,” Izv., Atmos. Ocean. Phys. 52, 277–293 (2016). https://doi.org/10.1134/S0001433816030142

    Article  Google Scholar 

  9. A. G. Zatsepin, V. I. Baranov, A. A. Kondrashov, A. O. Korzh, V. V. Kremenetskiy, et al., “Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation,” Oceanology (Engl. Transl.) 51, 554–567 (2011).

  10. A. G. Zatsepin, N. N. Golenko, A. O. Korzh, et al., “Influence of the dynamics of currents on the hydrophysical structure of the waters and the vertical exchange in the active layer of the Black Sea,” Oceanology (Engl. Transl.) 47, 301–312 (2007).

  11. N. A. Kalashnikova, O. Yu. Lavrova, M. I. Mityagina, and A. N. Serebryanyi, “Influence of eddy structures on the distribution of pollution in the coastal zone,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 10 (3), 228–240 (2013).

    Google Scholar 

  12. V. M. Kamenkovich, M. N. Koshlyakov, and A. S. Monin, Synoptic Eddies in the Ocean (Gidrometeoizdat, Leningrad, 1982) [in Russian].

    Google Scholar 

  13. G. K. Korotaev and V. P. Shutyaev, “Numerical simulation of ocean circulation with ultrahigh spatial resolution,” Izv., Atmos. Ocean. Phys. 56, 289–299 (2020). https://doi.org/10.1134/S000143382003010X

    Article  Google Scholar 

  14. D. A. Kremenchutskii, A. A. Kubryakov, P. O. Zav’yalov, et al., “The concentration of suspended matter in the Black Sea according to MODIS satellite data,” Ekol. Bezop. Pribrezhnoi Shel’fovoi zon Kompl. Ispol’z. Resur. Shel’fa 29, 5–9 (2014).

    Google Scholar 

  15. A. A. Kubryakov and S. V. Stanichny, “Mesoscale eddies in the Black Sea from satellite altimetry data,” Oceanology (Engl. Transl.) 55, 56–67 (2015).

  16. O. Yu. Lavrova, A. N. Serebryanyi, M. I. Mityagina, and T. Yu. Bocharova, “Subsatellite observations of small-scale hydrodynamic processes in the northeastern part of the Black Sea,” Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm. 10 (4), 308–322 (2013).

    Google Scholar 

  17. O.S. Puzina, Kubryakov, A.A. and Mizyuk, A.I., Seasonal and Vertical Variability of Currents Energy in the Sub-Mesoscale Range on the Black Sea Shelf and in its Central Part. Physical Oceanography, [e-journal] 28(1), pp. 445–459 (2020). https://doi.org/10.22449/1573-160X-2021-1-445-459

  18. A. Aleskerova, A. Kubryakov, S. Stanichny, et al., Characteristics of topographic submesoscale eddies off the Crimea coast from high resolution satellite optical measurements. Ocean Dyn. (in press).

  19. E. W. J. Bergsma, R. Almar, L. P. Melo de Almeida, and M. Sall, “On the operational use of UAVs for video-derived bathymetry,” Coastal Eng. 152, 103527 (2019). https://doi.org/10.1016/j.coastaleng.2019.103527

    Article  Google Scholar 

  20. A. Bosse, P. Testor, L. Mortier, et al., “Spreading of Levantine Intermediate Waters by submesoscale coherent vortices in the northwestern Mediterranean Sea as observed with gliders,” J. Geophys. Res.: Oceans 120 (3), 1599–1622 (2015). https://doi.org/10.1002/2014JC010263

    Article  Google Scholar 

  21. A. I. Chepyzhenko and A. A. Chepyzhenko, “Methods and device for in situ dissolved organic matter (DOM) monitoring in natural waters’ environment,” Proc. SPIE 10466, (2017). https://doi.org/10.1117/12.2287797

  22. A. I. Chepyzhenko and A. A. Chepyzhenko, “Methods and device for in situ total suspended matter (TSM) monitoring in natural waters' environment,” Proc. SPIE 10466, (2017). https://doi.org/10.1117/12.2287127

  23. G. Flierl and D. J. McGillicuddy, The Sea, Ch. 4: Mesoscale and Submesoscale Physical-Biological Interactions (Wiley, New York, 2002), Vol. 12, pp. 113–185.

  24. A. I. Ginzburg, A. G. Kostianoy, V. G. Krivosheya, et al., “Mesoscale eddies and related processes in the northeastern Black Sea,” J. Mar. Syst. 32 (1–3), 71–90 (2002). https://doi.org/10.1016/S0924-7963(02)00030-1

    Article  Google Scholar 

  25. J. Gula, M. J. Molemaker, and J. C. McWilliams, “Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream,” Geophys. Res. Lett. 42 (10), 4054–4062 (2015). https://doi.org/10.1002/2015GL063731

    Article  Google Scholar 

  26. S. Karimova, “Eddy statistics for the Black Sea by visible and infrared remote sensing,” in Remote Sensing of the Changing Oceans, Ed. by D. Tang (Springer-Verlag, Berlin, 2011), pp. 61–75. https://doi.org/10.1007/978-3-642-16541-2_4

  27. C. Kislik, I. Dronova, and M. Kelly, “UAVs in support of algal bloom research: a review of current applications and future opportunities,” Drones 2 (4), 35 (2018). https://doi.org/10.3390/drones2040035

    Article  Google Scholar 

  28. R. C. Kloosterziel and G. J. F. van Heijst, “An experimental study of unstable barotropic vortices in a rotating fluid,” J. Fluid Mech. 223, 1–24 (1991). https://doi.org/10.1017/S0022112091001301

    Article  Google Scholar 

  29. G. K. Korotaev, O. A. Saenko, and C. J. Koblinsky, “Satellite altimetry observations of the Black Sea level,” J. Geophys. Res.: Oceans 106 (1), 917– 933 (2001). .https://doi.org/10.1029/2000JC900120

    Article  Google Scholar 

  30. A. G. Kostianoy, A. I. Ginzburg, O. Yu. Lavrova, and M. I. Mityagina, “Satellite remote sensing of submesoscale eddies in the Russian seas,” in The Ocean in Motion: Circulation, Waves, Polar Oceanography, Ed. by M. Velarde, R. Tarakanov, and A. Marchenko (Springer-Verlag, Cham, 2018), pp. 397–413. https://doi.org/10.1007/978-3-319-71934-4_24.

  31. I. E. Kozlov, A. V. Artamonova, G. E. Manucharyan, and A. A. Kubryakov, “Eddies in the Western Arctic Ocean from spaceborne SAR observations over open ocean and marginal ice zones,” J. Geophys. Res.: Oceans 124 (9), 6601–6616 (2019). https://doi.org/10.1029/2019JC015113

    Article  Google Scholar 

  32. A. A. Kubryakov, A. A. Aleskerova, Y. N. Goryachkin, et al., “Propagation of the Azov Sea waters in the Black Sea under impact of variable winds, geostrophic currents and exchange in the Kerch Strait,” Prog. Oceanogr. 176, 102119 (2019). https://doi.org/10.1016/j.pocean.2019.05.011

    Article  Google Scholar 

  33. A. A. Kubryakov, A. V. Bagaev, S. V. Stanichny, and V. N. Belokopytov, “Thermohaline structure, transport and evolution of the Black Sea eddies from hydrological and satellite data,” Prog. Oceanogr. 167, 44–63 (2018). https://doi.org/10.1016/j.pocean.2018.07.007

    Article  Google Scholar 

  34. A. Mahadevan and A. Tandon, “An analysis of mechanisms for submesoscale vertical motion at ocean fronts,” Ocean Model. 14 (3–4), 241–256 (2006). https://doi.org/10.1016/j.ocemod.2006.05.006

    Article  Google Scholar 

  35. J. C. McWilliams, “Submesoscale currents in the ocean,” Proc. R. Soc. A 472 (2189), 20160117 (2016). https://doi.org/10.1098/rspa.2016.0117

    Article  Google Scholar 

  36. T. J. Mullaney and I. M. Suthers, “Entrainment and retention of the coastal larval fish assemblage by a short-lived, submesoscale, frontal eddy of the East Australian Current,” Limnol. Oceanogr. 58 (5), 1546–1556 (2013). https://doi.org/10.4319/lo.2013.58.5.1546

    Article  Google Scholar 

  37. W. Munk, L. Armi, K. Fischer, and F. Zachariasen, “Spirals on the sea,” Proc. R. Soc. A 456, 1217–1280 (2000). https://doi.org/10.1098/rspa.2000.0560

    Article  Google Scholar 

  38. T. Oguz, D. Macias, and J. Tintore, “Ageostrophic frontal processes controlling phytoplankton production in the Catalano-Balearic Sea (Western Mediterranean),” PLoS One 10 (6), e0129045 (2015). https://doi.org/10.1371/journal.pone.0129045

    Article  Google Scholar 

  39. L. N. Thomas, A. Tandon, and A. Mahadevan, “Submesoscale processes and dynamics,” in Ocean Modeling in an Eddying Regime (American Geophysical Union, Washington, DC, 2008), Vol. 177, pp. 17–38.

    Google Scholar 

  40. M. Yurovskaya, N. Rascle, V. Kudryavtsev, et al., “Wave spectrum retrieval from airborne sunglitter images,” Remote Sens. Environ. 217, 61–71 (2018). https://doi.org/10.1016/j.rse.2018.07.026

    Article  Google Scholar 

  41. A. Zatsepin, A. Kubryakov, A. Aleskerova, et al., “Physical mechanisms of submesoscale eddies generation: evidences from laboratory modeling and satellite data in the Black Sea,” Ocean Dyn. 69 (2), 253–266 (2019). https://doi.org/10.1007/s10236-018-1239-4

    Article  Google Scholar 

  42. V. Zhurbas, G. Väli, and N. Kuzmina, “Rotation of floating particles in submesoscale cyclonic and anticyclonic eddies: a model study for the southeastern Baltic Sea,” Ocean Sci. 15, 1691–1705 (2019). https://doi.org/10.5194/os-15-1691-2019

    Article  Google Scholar 

Download references

Funding

The study of the structure of submesoscale eddies based on in situ measurement and drone data was supported by the Russian Foundation for Basic Research (project no. 19-05-00479); satellite data were processed under state task no. 0555-2019-0001; drone measurements were supported by the Russian Foundation for Basic Research (project no. 19-05-00752).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Kubryakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubryakov, A.A., Lishaev, P.N., Chepyzhenko, A.I. et al. Impact of Submesoscale Eddies on the Transport of Suspended Matter in the Coastal Zone of Crimea Based on Drone, Satellite, and In Situ Measurement Data. Oceanology 61, 159–172 (2021). https://doi.org/10.1134/S0001437021020107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0001437021020107

Keywords:

Navigation