Skip to main content
Log in

Pathogenicity and Lipid Composition of Mycelium of the Fungus Stagonospora cirsii VIZR 1.41 during Submerged Cultivation

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

In order to identify qualitative markers of a potential mycoherbicide against Canada thistle based on the mycelium of the fungus Stagonospora cirsii VIZR 1.41, changes in its pathogenicity and lipid profiles during submerged cultivation on liquid sucrose-soybean medium were analyzed. The fatty-acid composition of major lipids and the identification of molecular species of structural lipids were determined. The lipid composition during fungal growth changed together with its pathogenicity. The highly pathogenic mycelium of the fungus (at the log phase of growth) was characterized with the relatively highest content of structural lipids: phosphatidylcholine (PC), phosphatidylethanolamine (PE), and ergosterol (ES). Their relative concentration decreased with culture age and a decrease in pathogenicity. The highest lipid yield was found at the beginning of stationary growth phase (at the maximal biomass yield) of S. cirsii; triacylglycerides (TAGs) were the most abundant. The double-bond index of fatty acids in glycerolipids decreased with culture age, and the substitution of molecular PC species (34:2 versus 36:4) and PE (36:4 versus 34:2) was observed as well. High levels of ES, TAG, PC (in particular, 34:2 forms) and PE (36:4 forms) were presumed to be qualitative markers of S. cirsii mycelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Rella, A., Farnoud, A.M., and Del Poeta, M., Prog. Lipid Res., 2016, vol. 61, pp. 63–67.

    Article  CAS  Google Scholar 

  2. Kobae, Y., Gutjahr, C., Paszkowski, U., Kojima, T., Fujiwara, T., and Hata, S., Plant Cell Physiol., 2014, vol. 55, no. 11, pp. 1945–1953.

    Article  CAS  Google Scholar 

  3. Aguilar, L.R., Pardo, J.P., Lomelí, M.M., Bocardo, O.I.L., Juárez Oropeza, M.A., and Guerra Sánchez, G., Arch. Microbiol., 2017, vol. 199, pp. 1195–1209.

    Article  CAS  Google Scholar 

  4. Keyhani, N.O., Fungal Biol., 2018, vol. 122, no. 6, pp. 420–429.

    Article  CAS  Google Scholar 

  5. Gao, Q., Shang, Y., Huang, W., and Wang, C., Appl. Environ. Microbiol., 2013, vol. 79, no. 24, pp. 7646–7653.

    Article  CAS  Google Scholar 

  6. Harayama, T. and Riezman, H., Nat. Rev. Mol. Cell Biol., 2018, vol. 19, no. 5, pp. 281–296.

    Article  CAS  Google Scholar 

  7. Siebers, M., Brands, M., Wewer, V., Duan, Y., Hölzl, G., and Dörmann, P., Biochim. Biophys. Acta, 2016, vol. 1861, no. 9, p. 1379.

    Article  CAS  Google Scholar 

  8. Chen, Y.-L., Montedonico, A.E., Kauffman, S., Dunlap, J.R., Menn, F.-M., and Reynolds, T.B., Mol. Microbiol., 2010, vol. 75, no. 5, pp. 1112–1132.

    Article  CAS  Google Scholar 

  9. Gao, Q., Yuzhen, L., Hongyan, Y., Xu, Y.-J., Huang, W., and Wang, C., Environ. Microbiol., 2016, vol. 18, no. 11, pp. 3976–3990.

  10. Wang, J., Wang, H., Zhang, C., Wu, T., Ma, Z., and Chen, Y., Phytopathol. Res., 2019, vol. 1, no. 16. https://doi.org/10.1186/s42483-019-0023-9

  11. Kazan, K. and Gardiner, D.M., PLoS Pathog, 2017, vol. 13, no. 5. https://doi.org/10.1371/journal.ppat.1006297

  12. Warnecke, D. and Heinz, E., Cell. Mol. Life Sci., 2003, vol. 60, no. 5, pp. 919–941.

    Article  CAS  Google Scholar 

  13. Ramamoorthy, V., Cahoon, E.B., Thokala, M., Kaur, J., Li, J., and Shah, D.M., Eukaryotic Cell, 2009, vol. 8, no. 2, pp. 217–229.

    Article  CAS  Google Scholar 

  14. Weete, J.D., Lipid Biochemistry of Fungi and Other Organisms, New York: Plenum, 1980.

    Book  Google Scholar 

  15. Beccaccioli, M., Reverberi, M., and Scala, V., Front. Biosci., 2019, vol. 24, no. 1, pp. 172–175.

    Article  Google Scholar 

  16. Frolova, G.M., Sokornova, S.V., and Berestetskii, A.O., Appl. Biochem. Microbiol., 2019, vol. 55, no. 5, pp. 556–562.

    Article  CAS  Google Scholar 

  17. Sokornova, S.V. and Berestetskii, A.O., S.-Kh. Biol., 2018, vol. 53, no. 5, pp. 1054–1061.

    Google Scholar 

  18. Barykina, R.P., Veselova, T.D., Devyatov, A.G., Dzhalilova, Kh.Kh., Il’ina, G.M., and Chubatova, N.V., Spravochnik po botanicheskoi mikrotekhnike (A Handbook on Botanical Microequipment), Moscow: Mosk. Univ., 2004.

  19. Kotlova, E.R., Senik, S.V., Kyukher, T., Shavarda, A.L., Kiyashko, A.A., Psurtseva, N.V., and Zubarev, R.A., Microbiology (Moscow), 2009, vol. 78, no. 2, pp. 193–201.

    Article  CAS  Google Scholar 

  20. Fuchs, B., Suss, R., Teuber, K., Eibisch, M., and Schiller, J., J. Chromatogr., A, 2011, vol. 1218, no. 19, pp. 2754–2774.

    Article  CAS  Google Scholar 

  21. Benning, C., Huang, Z.H., and Gage, D.A., Arch. Biochem. Biophys., 1995, vol. 317, no. 1, pp. 103–111.

    Article  CAS  Google Scholar 

  22. Berestetskiy, A. and Sokornova, S., in Biological Approaches for Controlling Weeds, Radhakrishnan, R., Ed., London: IntechOpen, 2018. https://doi.org/10.5772/intechopen.76936

  23. Pavlova, N.A. and Sokornova, S.V., Vestn. Zashch. Rast., 2018, vol. 4, no. 98, pp. 67‒69.

    Google Scholar 

  24. Skoneczny, M. and Skoneczna, A., Stress Response Mechanisms in Fungi, Skoneczny, M., Ed., Cham: Springer, 2018, pp. 35–85.

    Book  Google Scholar 

  25. Akpinar-Bayizit, A., Int. J. Chem. Eng. Appl., 2014, vol. 5, no. 5, pp. 409–414.

    CAS  Google Scholar 

  26. Solomon, P.S., Lee, R.C., Wilson, T.J., and Oliver, R.P., Mol. Microbiol., 2004, vol. 53, no. 4, pp. 1065–1073.

    Article  CAS  Google Scholar 

  27. Thines, E., Weber, R.W.S., and Talbot, N.J., Plant Cell, 2000, vol. 12, no. 9, pp. 1703–1718.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rudd, J.J., Kanyuka, K., Hassani-Pak, K., Derbyshire, M., Andongabo, A., Devonshire, J., et al., Plant Physiol., 2015, vol. 167, no. 3, pp. 1158–1185.

    Article  CAS  Google Scholar 

  29. Lösel, D.M., Pestic. Sci., 1991, vol. 32, no. 3, pp. 353–362.

    Article  Google Scholar 

  30. Van Etten, J. and Gottlieb, D., J. Bacteriol., 1965, vol. 89, no. 2, pp. 409–414.

    Article  CAS  Google Scholar 

  31. Klemptner, R.L., Sherwood, J.S., Tugizimana, F., Dubery, I.A., and Piater, L.A., Mol. Plant Pathol., 2014, vol. 15, no. 7, pp. 747–761.

    Article  CAS  Google Scholar 

  32. Govrin, E.M. and Levine, A., Curr. Biol., 2000, vol. 10, no. 13, pp. 751–757.

    Article  CAS  Google Scholar 

  33. Ding, W., Palaiokostas, M., Wang, W., and Orsi, M., J. Phys. Chem., 2015, vol. 119, no. 49, pp. 15263–15274.

    Article  CAS  Google Scholar 

  34. Janssen, M.J., Koorengevel, M.C., de Kruijff, B., and de Kroon, A.I., Yeast, 2000, vol. 16, no. 7, pp. 641–650.

    Article  CAS  Google Scholar 

  35. Cassilly, C.D. and Reynolds, T.B., J. Fungi, 2018, vol. 4, no. 28. https://doi.org/10.3390/jof4010028

  36. Nimrichter, L., Cerqueira, M.D., Leităo, E.A., Miranda, K., Nakayasu, E.S., Almeida, S.R., Almeida, I.C., Alviano, C.S., Barreto-Bergter, E., and Rodriges, M.L., Infect. Immun., 2005, vol. 73, no. 12, pp. 7860–7868.

    Article  CAS  Google Scholar 

  37. Oura, T. and Kajiwara, S., Arch. Microbiol., 2008, vol. 154, no. 12, pp. 3795–3803.

    CAS  Google Scholar 

  38. Oura, T. and Kajiwara, S., Arch. Microbiol., 2010, vol. 156, no. 4, pp. 1234–1243.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to M. Z. Muradymov (Botanical Institute), M. A. Vinogradskaya (Botanical Institute), and A. V. Rubizhan (VIZR) for their substantial research assistance.

Funding

This work was carried out with the financial support of the Russian Science Foundation (project No. 16-16-00085) on the equipment of the Innovative Plant Protection Technologies Center for Collective Use (VIZR), as well as the research centers Development of Molecular and Cellular Technologies and Chemical Analysis and Materials of St. Petersburg State University.

The methodological basis of the protocol for the analysis of molecular species of glycoceramides and sterols was developed during the implementation of the topic “Assessment of changes in the correlation structure of metabolic networks during the growth and development of fungi and plants from the standpoint of system biology” of the Botanical Institute of the Russian Academy of Sciences (AAAA-A18-118032390136-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Berestetskiy.

Ethics declarations

The authors declare that they have no conflict of interest. The study was performed without the use of animals or people as subjects.

Additional information

Translated by P. Kuchina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frolova, G.M., Kotlova, E.R., Sokornova, S.V. et al. Pathogenicity and Lipid Composition of Mycelium of the Fungus Stagonospora cirsii VIZR 1.41 during Submerged Cultivation. Appl Biochem Microbiol 57, 226–235 (2021). https://doi.org/10.1134/S0003683821020034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821020034

Keywords:

Navigation