Skip to main content
Log in

Enzymatic Synthesis of Functional Xylose Glucoside and Its Application to Prebiotic

  • Published:
Applied Biochemistry and Microbiology Aims and scope Submit manuscript

Abstract

Xylose glucosides (XGs) have been effectively used in many industries because of their resistance to browning reactions and acids and prebiotic properties. In this study, XGs were synthesized through the transglycosylation reaction of recombinant amylomaltase. The optimal conditions for synthesis included the incubation in 1.5% (wt/vol) tapioca starch, 2% (wt/vol) xylose and 4 U/mL of amylomaltase in 20 mM Tris-HCl buffer, pH 7.0 at 70°C for 120 h. Two products had Mw of 335.10 and 497.20 Da according to mass spectrometry analysis. These mass values corresponded to xylose monoglucoside (XG1) and xylose maltoside (XG2). The determination of XG1 structure was performed by 1H and 13C-NMR analysis to identify α-1,4-glycosidic bond. The long-carbohydrate chains of xylose were less effective in sweetness property and acidic resistance than xylose and sucrose. However, XG1 and XG2 showed more solubility, resistance to browning reactions and prebiotic properties than xylose. Thus, the XGs have the potential as functional ingredients for health benefits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Doudoroff, M., Hassid, W.Z., Putman, E.W., Potter, A.L., and Lederberg, J., J. Biol. Chem., 1949, vol. 179, no. 2, pp. 921−934.

    Article  CAS  PubMed  Google Scholar 

  2. Takaha, T. and Smith, S.M., Biotechnol. Genet. Eng. Rev., 1999, vol. 16, no. 1, pp. 257−280.

    Article  CAS  PubMed  Google Scholar 

  3. Terada, Y., Fujii, K., Takaha, T., and Okada, S., Appl. Environ. Microbiol., 1999, vol. 65, no. 1, pp. 910−915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Goda, S.K., Eissa, O., Akhtar, M., and Minton, N.P., Microbiology, 1997, vol. 143, no. 10, pp. 3287−3294.

    Article  CAS  PubMed  Google Scholar 

  5. Bhuiyan, S., M. Kitaoka, and K. Hayashi, A., J. Mol. Catal. B: Enzym., 2003, vol. 22, no. 1, pp. 45−53.

    Article  CAS  Google Scholar 

  6. Liebl, W., Feil, R., Gabelsberger, J., Kellermann, J., and Schleifer, K., Eur. J. Biochem., 1992, vol. 207, no. 1, pp. 81−88.

    Article  CAS  PubMed  Google Scholar 

  7. van der Maarel, M., Euverink, G.J., Binnema, D.J., Bos, H.T.P., and Bergsma, J., Med. Fac. Landbouww. Univ. Gent., 2000, vol. 65, no. 1, pp. 231−234.

  8. Bang, B.Y., Kim, H.J., Kim, H., Baik, M.Y., Ahn, S.C., Kim, C., et al., J. Microbiol. Biotechnol., 2006, vol. 16, no. 1, pp. 1809−1813.

    CAS  Google Scholar 

  9. Srisimarat, W., Towviriyakul, A., Kaulpiboon, J., Krusong, K., Zimmermann, W., and Pongsawasdi, P., J. Incl. Phenom., 2011, vol. 70, no. 1, pp. 369−375.

    Article  CAS  Google Scholar 

  10. Jeon, B., Taguchi, H., Sakai, H., Ohshima, T., Wakagi, T., and Matsuzawa, H., Eur. J. Biochem., 1997, vol. 248, no. 1, pp. 171−178.

    Article  CAS  PubMed  Google Scholar 

  11. Tantanarat, K., O’Neill, E., Rejzek, M., Field, R., and Limpaseni, T., Process Biochem., 2014, vol. 49, no. 1, pp. 84−89.

    Article  CAS  Google Scholar 

  12. Kaper, T., Talik, B., Ettema, T.J., Bos, H., van der Maarel, M.J.E.C., and Dijkhuizen, L., Appl. Eviron. Microbiol., 2005, vol. 71, pp. 5098−5106.

    Article  CAS  Google Scholar 

  13. van der Maarel, M.J.E.C., Caprona, I., Euverinka, G.J.W., Bosa, H.T., Kaper, T., Binnema, D.J., and Steenekena, P.A.M., Starch/Stärke, 2005, vol. 57, no. 10, pp. 465−520.

    Article  CAS  Google Scholar 

  14. Alting, A.C., van de Veld, F., Kanning, M.W., Burgering, M., Mulleners, L., Sein, A., and Buwalda, P., Food Hydrocoll., 2009, vol. 23, no. 3, pp. 980−987.

    Article  CAS  Google Scholar 

  15. Rudeekulthamrong, P., Sawasdee, K., and Kaulpiboon, J., Biotechnol. Bioprocess Eng., 2013, vol. 18, pp. 778−786.

    Article  CAS  Google Scholar 

  16. Buskas, T., Ingale, S., and Boons, G., Glycobiology, 2006, vol. 16, pp. 113−136.

    Article  CAS  Google Scholar 

  17. Craig, R.M., and Atkinson, A.J., Gastroenterology, 1988, vol. 95, no. 1, pp. 223−231.

    Article  CAS  PubMed  Google Scholar 

  18. Muthu, M.S. and Kumar, S., Pediatric Dentistry, 2nd ed., New Delhi: Elsevier Health Sciences, Rakmo Press, 2011.

    Google Scholar 

  19. Doerfler, R.E., Cain, L.D., Edens, F.W., Parkhurst, C.R., Qureshi, M.A., and Havenstein, G.B., Poult. Sci., 2000, vol. 79, no. 5, pp. 656−660.

    Article  CAS  PubMed  Google Scholar 

  20. Kitaoka, M., Taniguchi, H., and Sasaki, T., Appl. Biochem. Microbiol., 1990, vol. 34, no. 2, pp. 178−182.

    CAS  Google Scholar 

  21. Kitahata, S. and Okada, S., J. Biochem., 1976, vol. 79, no. 3, pp. 641−648.

    Article  CAS  PubMed  Google Scholar 

  22. Putman, E.W., Litt, C.F., and Hassid, W.Z., J. Am. Chem. Soc., 1955, vol. 77, no. 16, pp. 4351−4353.

    Article  CAS  Google Scholar 

  23. Watanasatitarpa, S., Rudeekulthamrong, P., Krusong, K., Srisimarat, W., Zimmermann, W., Pongsawasdi, P., et al., Appl. Biochem. Microbiol., 2014, vol. 50, no. 1, pp. 273−282.

    Article  CAS  Google Scholar 

  24. Kaulpiboon, J., Rudeekulthamrong, P., Watanasatitarpa, S., Ito, K., and Pongsawasdi, P., J. Mol. Catal. B: Enzym., 2015, vol. 120, no. 1. pp. 127−135.

    Article  CAS  Google Scholar 

  25. Saehu, S., Srisimarat, W., Prousoontorn, M., and Pongsawasdi, P., J. Mol. Catal. B: Enzym., 2013, vol. 88, no. 1, pp. 77−83.

    Article  CAS  Google Scholar 

  26. Aramsangtienchai, P., Chavasiri, W., Ito, K., and Pongsawasdi, P., J. Mol. Catal. B: Enzym., 2011, vol. 73, no. 1, pp. 27−34.

    Article  CAS  Google Scholar 

  27. Kikuchi, H., Nagura, T., Inoue, M., Kishida, T., Sakurai, H., Yokota, A., et al., J. Appl. Glycosci., 2004, vol. 51, no. 1, pp. 291−296.

    Article  CAS  Google Scholar 

  28. Ito, S., Taguchi, H., Hamada, S., Kawauchi, S., Ito, H., Senoura, T., et al., Appl. Microbiol. Biotechnol., 2008, vol. 79, no. 3, pp. 433−441.

    Article  CAS  PubMed  Google Scholar 

  29. Mishima, T., Tanaka, K., Tsuge, H., Sugita, J., Nakahara, M., and Hayakawa, T., J. Agr. Food Chem., 2005, vol. 53, no. 18, pp. 7257−7261.

    Article  CAS  Google Scholar 

  30. Kometani, T., Terada, Y., Nishimura, T., and Okada, S., Biosci. Biotchnol. Biochem., 1994, vol. 58, no. 11, pp. 1990−1994.

    Article  CAS  Google Scholar 

  31. Nakakuki, T., Trends Glycosci. Glycotechnol., 2003, vol. 15, no. 1, pp. 57−64.

    Article  CAS  Google Scholar 

  32. Crittenden, R.G. and Playne, M.J., Trends Food Sci. Technol., 1996, vol. 7, no. 11, pp. 353−361.

    Article  CAS  Google Scholar 

  33. Davídek, T., Robert, F., Devaud, S., Vera, F.A., and Blank, I., J. Agric. Food Chem., 2006, vol. 54, no. 18, pp. 6677−6684.

    Article  PubMed  CAS  Google Scholar 

  34. Abod, D.A., Albader, S., and Al-Saeedy, M.A., J. Purity, Utility React. Environ., 2014, vol. 3, no. 1, pp. 50−61.

    Google Scholar 

  35. Tiihonen, K., Suomalainen, T., Tynkkynen, S., and Rautonen, N., Brj. J. Nutr., 2008, vol. 99, no. 1, pp. 826−831.

    Article  CAS  Google Scholar 

  36. Yang, S.C., Chen, J.Y., Shang, H.F., Cheng, T.Y., Tsou, S.C., and Chen, J.R., World J. Gastroenterol., 2005, vol. 11, no. 47, pp. 7413−7417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee, Y.Y., Erdogan, A., and Rao, S.S., J. Neurogastroenterol. Motil., 2014, vol. 20, no. 2, pp. 265−270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaneko, T., Yokoyama, A., and Suzuki, M., Biosci. Biotchnol. Biochem., 1995, vol. 59, no. 7, pp. 1190−1194.

    Article  CAS  Google Scholar 

  39. Kohmoto, T., Tsuji, K., Kaneko, T., Shiota, M., Fukui, F., Takaku, H., et al., Biosci. Biotchnol. Biochem., 1992, vol. 56, no. 6, pp. 937−940.

    Article  CAS  Google Scholar 

  40. Mäkeläinen, H., Forssten, S., Saarinen, M., Stowell, J., Rautonen, N., and Ouwehand, A., Benef. Microbes, 2010, vol. 1, no. 1, pp. 81−91.

    Article  PubMed  CAS  Google Scholar 

  41. Gänzle, M.G., Vermeulen, N., and Vogel, R.F., Food Microbiol., 2007, vol. 24, no. 2, pp. 128−138.

    Article  PubMed  CAS  Google Scholar 

  42. Falony, G., Verschaeren, A., De Bruycker, F., De Preter, V., Verbeke, K., Leroy, F., et al., Appl. Environ. Microbiol., 2009, vol. 75, no. 18, pp. 5884−5892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roslund, M., Tähtinen, P., Niemitz, M., and Sjöholm, R., Carbohydr. Res., 2008, vol. 343, no. 1, pp. 101−112.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors also thank the Drug Discovery and Development Center, and Center of Scientific Equipment for Advanced Research, Thammasat University for providing a special service rate of HPLC.

Funding

This study was financially supported by the Faculty of Medicine, Thammasat University Research Fund. In addition, partial support from the Phramongkutklao College of Medicine Research Fund was also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Kaulpiboon.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khummanee, N., Rudeekulthamrong, P. & Kaulpiboon, J. Enzymatic Synthesis of Functional Xylose Glucoside and Its Application to Prebiotic. Appl Biochem Microbiol 57, 212–218 (2021). https://doi.org/10.1134/S0003683821020058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0003683821020058

Keywords:

Navigation