Skip to main content
Log in

Numerical Simulation of the Turbulent Boundary Layer with an Adverse Pressure Gradient

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

Numerical simulation of the turbulent boundary layer with an adverse pressure gradient is performed on the basis of a differential three-equation turbulence model. The investigation is carried out for moderate and strong pressure gradients, the latter corresponding to a preseparation boundary layer. The results of the calculations of the mean velocity and the turbulence intensity point to a considerable influence of the adverse pressure gradient and are in agreement with the available experimental data in a wide range of governing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Monty, J.P., Harun, Z., and Marusic, I., A parametric study of adverse gradient turbulent boundary layers, Int. J. Heat Fluid Flow, 2011, vol. 32, pp. 575–585.

    Article  Google Scholar 

  2. Clauser, F.H., Turbulent boundary layers in adverse pressure gradients, J. Aeronaut. Sci., 1954, vol. 21, pp. 91–108.

    Article  Google Scholar 

  3. Perry, A.E., Marusic, I., and Jones, M.B., On the streamwise evolution of turbulent boundary layers in arbitrary pressure gradients, J. Fluid Mech., 2002, vol. 461, pp. 61–91.

    Article  ADS  MathSciNet  Google Scholar 

  4. Coles, D., The law of the wake in the turbulent boundary layer, J. Fluid Mech., 1956, vol. 1, pp. 191–226.

    Article  ADS  MathSciNet  Google Scholar 

  5. Kline, S.J., Reynolds, W.C., Schraub, F.A., and Rustandler, P.W., The structure of turbulent boundary layers, J. Fluid Mech., 1967, vol. 30, no. 4, pp. 741–773.

    Article  ADS  Google Scholar 

  6. Lushchik, V.G., Pavel’ev, A.A., and Yakubenko, A.E., Three-parameter model of shear turbulence, Fluid Dyn., 1978, vol. 13, no. 3, pp. 350–360.

    Article  ADS  Google Scholar 

  7. Leontiev, A.I., Lushchik, V.G., and Makarova, M.S., Study of effect of molecular Prandtl number, transpiration, and longitudinal pressure gradient on flow and heat transfer characteristics in boundary layers, Comp. Therm. Sci., 2019, vol. 11, nos. 1–2, pp. 41–49.

    Article  Google Scholar 

  8. Lushchik, V.G., Makarova, M.S., and Reshmin, A.I., Laminarization of flow with heat transfer in a plane channel with a confuser, Fluid Dyn., 2019, vol. 54, no. 1, pp. 67–76.

    Article  ADS  MathSciNet  Google Scholar 

  9. Lioznov, G.L., Lushchik, V.G., Makarova, M.S., and Yakubenko, A.E., Freestrem turbulence effect on flow and heat transfer in the flat-plate boundary layer, Fluid Dyn., 2012, vol. 47, no. 5, pp. 590–592.

    Article  ADS  Google Scholar 

  10. Leont’ev, A.I., Lushchik, V.G., and Makarova, M.S., Numerical investigation of tube flow with suction through permeable walls, Fluid Dyn., 2014, vol. 49, no. 3, pp. 362–368.

    Article  ADS  Google Scholar 

  11. Makarova, M.S. and Lushchik, V.G., Numerical simulation of turbulent flow and heat transfer in tube under injection of gas through permeable walls, J. Phys.: Conf. Ser., 2017, vol. 891, no. 012066.

  12. Lushchik, V.G. and Makarova, M.S., Distinctive features of heat transfer on a permeable plate in supersonic flow under injection of extraneous gas, Fluid Dyn., 2020, vol. 55, no. 5, pp. 636–639.

    Article  ADS  MathSciNet  Google Scholar 

  13. Lushchik, V.G., Makarova, M.S., and Reshmin, A.I., Enhancement of heat transfer during turbulent flow in plane and circular nonseparating diffusers, J. Eng. Phys. Thermophys., 2021, vol. 94, pp. 467–478.

    Article  Google Scholar 

  14. Bam-Zelikovich, G.M., Calculation of boundary layer separation, Izv. Akad. Nauk SSSR. Otd. Tekhn. Nauk, 1954, no. 12, pp. 68–85.

  15. Kader, B.A. and Yaglom, A.M., Similarity laws for turbulent wall flows, in: Advances in Science and Technology. Fluid Mechanics. Vol. 15, Moscow: All-Union Institute of Science and Technical Information, 1980, pp. 81–155.

    Google Scholar 

  16. Monin. A.S. and Yaglom, A.M., Statistical Fluid Mechanics. Vol. 1, The MIT Press, 1971.

  17. Inoue, M., Pullin, D.I., Harun, Z., and Marušic, I., LES of the adverse-pressure gradient turbulent boundary layer, Int. J. Heat Fluid Flow, 2013, vol. 44, pp. 293–300.

    Article  Google Scholar 

  18. So, R.M.C., Pressure gradient effects on Reynolds analogy for constant property equilibrium turbulent boundary layers, Int. J. Heat Mass Transfer, 1994, vol. 37, pp. 27–41.

    Article  ADS  Google Scholar 

  19. Kiselev, N.A., Leontiev, A.I., Vinogradov, Yu.A., Zditovets, A.G., and Popovich, S.S., Heat transfer and skin-friction in a turbulent boundary layer under a non-equilibrium longitudinal adverse pressure gradient, Int. J. Heat Fluid Flow, 2021, vol. 89, no. 108801, pp. 1–16.

    Article  Google Scholar 

  20. Skote, M. and Henningson, D.S., Direct numerical simulation of adverse pressure gradient turbulent boundary layers, Fluid Mech. its Appl., 1998, vol. 46, pp. 171–174.

  21. Sanmiguel Vila, C., Vinuesa, R., Discetti, S., et al., Experimental realisation of near-equilibrium adverse-pressure-gradient turbulent boundary layers, Exp. Therm. Fluid. Sci., 2020, vol. 112, no. 109975.

  22. Marušic, I. and Perry, A.E., A wall-wake model for the turbulence structure of boundary layers. Part 2. Further experimental support, J. Fluid Mech., 1995, vol. 298, pp. 389–407.

    Article  ADS  Google Scholar 

  23. Kline, S.J., Reynolds, W.C., Schraub, F.A., and Runstadler, P.W., The structure of turbulent boundary layers, J. Fluid Mech., 1967, vol. 30, pp. 741–773.

    Article  ADS  Google Scholar 

  24. Nagano, Y., Tsuji, T., and Houra, T., Structure of turbulent boundary layer subjected to adverse pressure gradient, Int. J. Heat Fluid Flow, 1998, vol. 19, pp. 563–572.

    Article  Google Scholar 

  25. Senthil, S., Kitsios, V., Sekimoto, A., et al., Analysis of the factors contributing to the skin friction coefficient in adverse pressure gradient turbulent boundary layers and their variation with the pressure gradient, Int. J. Heat Fluid Flow, 2020, vol. 82, no. 108531.

  26. Bobke, A., Vinuesa, R., Orlü, R., and Schlatter, P., History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers, J. Fluid Mech., 2017, vol. 820, pp. 667–692.

    Article  ADS  MathSciNet  Google Scholar 

  27. Skåre, P.E. and Krogstad, P.Å., A turbulent equilibrium boundary layer near separation, J. Fluid Mech., 1994, vol. 272, pp. 319–348.

    Article  ADS  Google Scholar 

  28. Cutler, A.D. and Johnston, J.P., The relaxation of a turbulent boundary layer in an adverse pressure gradient, J. Fluid Mech., 1989, vol. 200, pp. 367–387.

    Article  ADS  Google Scholar 

  29. Bradshaw, P. and Ferriss, D.H., Nat. Phys. Lab. Aero Rept. no. 1145 (1965).

  30. Gogish, L.V. and Stepanov, G.Yu., Turbulentnye otryvnye techeniya (Turbulent Separation Flows), Moscow: Nauka, 1979.

  31. Lushchik, V.G., Pavel’ev, A.A., and Yakubenko, A.E., Turbulent flows. Models and numerical investigations. A review, Fluid Dyn., 1994, vol. 29, no. 4, pp. 440–457.

    Article  ADS  MathSciNet  Google Scholar 

  32. Simpson, R.L., Strickland, J.H., and Barr, P.W., Features of a separating turbulent boundary layer in the vicinity of separation, J. Fluid Mech., 1977, vol. 79, no. 3, pp. 553–594.

    Article  ADS  Google Scholar 

  33. Kader, B.A. and Yaglom, A.M., Application of similarity considerations to the calculations of decelerating turbulent boundary layers, Dokl. Akad. Nauk SSSR, 1977, vol. 233, no. 1, pp. 52–55.

    ADS  Google Scholar 

Download references

Funding

The study was carried out with the financial support of the Russian Science Foundation (project no. 19-79-10213).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. G. Lushchik or M. S. Makarova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Lebedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lushchik, V.G., Makarova, M.S. Numerical Simulation of the Turbulent Boundary Layer with an Adverse Pressure Gradient. Fluid Dyn 57, 328–340 (2022). https://doi.org/10.1134/S0015462822030119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462822030119

Keywords:

Navigation