Skip to main content
Log in

Titanium Minerals and Their Assemblages in the Earth’s Mantle: A Review of Natural and Experimental Data

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract—

A review of the data available on the composition and abundance of titanium-bearing phases in the Earth’s mantle is provided in the paper. The main attention is paid to the discussion of natural minerals: the patterns of the mineralogy of mantle titanium-bearing phases (rutile, FeTiO3 ilmenite, garnet, pyroxene, spinel and post-spinel phases, phases with ilmenite- and perovskite-type structures, armalcolite) are given, the likely mechanisms of titanium incorporation into mantle phases, as well as the limiting titanium concentrations in these phases are considered. The new experimental data on the composition and conditions of the formation of titanium-bearing minerals and their phase associations at different mantle depths is generalized: phase relations in Ti-bearing systems (MgO–SiO2–TiO2 ± Al2O3) and the influence of titanium on the parameters of the most important phase transformations under the conditions of the mantle are considered. Agreement of the experimental results with the natural data allows us to clarify the patterns of the interphase titanium partitioning and the minor-element composition of the Earth’s deep geospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. Akaogi, K. Abe, H. Yusa, T. Ishii, T. Tajima, H. Kojitani, D. Mori, and Y. Inaguma, “High-pressure high-temperature phase relations in FeTiO3 up to 35 GPa and 1600°C,” Phys. Chem. Mineral. 44 (1), 63–73 (2017).

    Article  Google Scholar 

  2. M. Akaogi, T. Tajima, M. Okano, and H. Kojitani, “High-pressure and high-temperature phase transitions in Fe2TiO4 and Mg2TiO4 with implications for titanomagnetite inclusions in superdeep diamonds,” Minerals 9 (10), 614 (2019).

    Article  Google Scholar 

  3. T. A. Alifirova, L. N. Pokhilenko, and A. V. Korsakov, “Apatite, SiO2, rutile and orthopyroxene precipitates in minerals of eclogite xenoliths from Yakutian kimberlites, Russia,” Lithos 226, 31–49 (2015).

    Article  Google Scholar 

  4. M. Arima and A. D. Edgar, “Substitution mechanisms and solubility of titanium in phlogopites from rocks of probable mantle origin,” Contrib. Mineral. Petrol. 77 (3), 288–295 (1981).

    Article  Google Scholar 

  5. W. H. Baur, “Atomabstände und bindungswinkel im brookit, TiO2,” Acta Crystallographica 14 (3), 214–216 (1961).

    Article  Google Scholar 

  6. N. A. Bendeliany, S. T. Popova, and L. F. Vereschagin, “A new modification of titanium dioxide stable at high pressure,” Geokhimiya 5, 499–502 (1966).

    Google Scholar 

  7. L. Bindi, E. A. Sirotkina, A. V. Bobrov, D. Pushcharovsky, and T. Irifune, “Discovery of MgTiSi2O7: a new high-pressure silicate with the weberite structure synthesized at transition-zone conditions,” Phys. Chem. Mineral. 44(6), 419–424 (2017a).

    Article  Google Scholar 

  8. L. Bindi, E. Sirotkina, A. V. Bobrov, M. J. Walter, D. Pushcharovsvsky, and T. Irifune, “Bridgmanite-like crystal structure in the novel Ti-rich phase synthesized at transition zone condition,” Am Mineral. 102 (1), 227–231 (2017b).

    Article  Google Scholar 

  9. F. C. Bishop, J. V. Smith, and J. B. Dawson, “Na, K, P and Ti in garnet, pyroxene and olivine from peridotite and eclogite xenoliths from African kimberlites,” Lithos 11, 155–173 (1978).

    Article  Google Scholar 

  10. A. V. Bobrov, A. M. Dymshits, and Yu. A. Litvin, “Conditions of magmatic crystallization of Na–bearing majoritic garnets in the Earth mantle: evidence from experimental and natural data,” Geochem. Int. 47 (10), 951–965 (2009).

    Article  Google Scholar 

  11. F. R. Boyd and P. H. Nixon, “Origin of the ilmenite–silicate nodules in kimberlites from Lesotho and South Africa,” Lesotho Kimberlites, Ed. By P. H. Nixon (Cape and Transvaal Printers, 1973), pp. 254–268.

    Google Scholar 

  12. F. E. Brenker, T. Stachel, and J. W. Harris, “Exhumation of lower mantle inclusions in diamond: ATEM investigation of retrograde phase transitions, reactions and exsolution,” Earth Planet Sci Lett. 198 (1–2), 1–9 (2002).

    Article  Google Scholar 

  13. L. W. Curtis and J. Gittins, “Aluminous and titaniferous clinopyroxenes from regionally metamorphosed agpaitic rocks in central Labrador,” J. Petrol. 20, 165–186 (1979).

    Article  Google Scholar 

  14. R. M. Davies, W. L. Griffin, S. Y. O’Reilly, and T. E. M-cCandless, “Inclusions in diamond from the K14 and K10 kimberlites, Buffalo Hills, Alberta, Canada: diamond growth in a plume,” Lithos 77, 99–111 (2004).

    Article  Google Scholar 

  15. J. B. Dawson, “Contrasting types of upper–mantle metasomatism? Developments in Petrology 11 (2), 289–294 (1984).

    Article  Google Scholar 

  16. J. B. Dawson and J. V. Smith, “The MARID (mica–amphibole–rutile–ilmenite–diopside) suite of xenoliths in kimberlite,” Geochim. Cosmochim. Acta 41 (2), 309–323 (1977).

    Article  Google Scholar 

  17. J. B. Dawson, J. V. Smith, and I. M. Steele, “Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano, Oldoinyo Lengai, Tanzania,” J. Petrol. 36 (3), 797–826 (1995).

    Article  Google Scholar 

  18. L. Dobrzhinetskaya, H. W. Green, and S. Wang, “Alpe Arami: a peridotite massif from depths of more than 300 kilometers,” Science 271 (5257), 1841–1845 (1996).

    Article  Google Scholar 

  19. Z. Dong, J. Zhou, Q. Lu, and Z. Peng, “Yimengite, K(Cr,Ti,Fe,Mg)12O19, a new mineral from China,” Kexue Tongbao, Bull. Sci. 15, 932–936 (1983) [in Chinese].

    Google Scholar 

  20. N. A. Dubrovinskaia, L. S. Dubrovinsky, V. Swamy, and R. Ahuja, “Cotunnite-structured titanium dioxide,” High Pressure Research 22 (2), 391–394 (2002).

    Article  Google Scholar 

  21. N. N. Eremin, N. D. Gostishcheva, A. V. Bobrov, A. A. Bendeliani and A. I. Burova, “Estimation of the incorporation of Ti4+ ions in the composition of mantle garnets: the results of atomistic calculations,” Crystal. Rept. 66 (1), 56–59 (2021).

    Article  Google Scholar 

  22. A. J. Erlank and R. S. Rickard, “Potassic richterite bearing peridotites from kimberlite and the evidence they provide for upper mantle metasomatism,” In International Kimberlite Conference: Extended Abstracts 2, 93–95 (1977).

  23. A. J. Erlank, F. G. Waters, C. J. Hawkesworth, S. E. Haggerty, H. L. Allsopp, R. S. Rickard, and M. Menzies, “Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa,” In Mantle Metasomatism, Ed. by M. A. Menzies and C. J. Hawkesworth (Academic Press, 1987), pp. 221–311.

    Google Scholar 

  24. W. C. Forbes and M. F. J. Flower, “Phase relations of titan-phlogopite, K2Mg4TiAl2Si6O20(OH)4: a refractory phase in the upper mantle?” Earth Planet Sci Lett. 22 (1), 60–66 (1974).

    Article  Google Scholar 

  25. F. A. Frey and M. Prinz, “Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis,” Earth Planet Sci Lett. 38 (1), 129–176 (1978).

    Article  Google Scholar 

  26. A. Giuliani, V. S. Kamenetsky, D. Phillips, M. A. Kendrick, B. A. Wyatt, and K. Goemann “Nature of alkali–carbonate fluids in the sub-continental lithospheric mantle,” Geology 40 (11), 967–970 (2012).

    Article  Google Scholar 

  27. M. Grégoire, B. N. Moine, S. Y. O’Reilly, J. Y. Cottin, and A. Giret “Trace element residence and partitioning in mantle xenoliths metasomatized by highly alkaline, silicate- and carbonate-rich melts (Kerguelen Islands, Indian Ocean),” J. Petrol. 41 (4), 477–509 (2000).

    Article  Google Scholar 

  28. B. R. Hacker, T. Sharp, R. Y. Zhang, J. G. Liou, and R. L. Hervig, “Determining the origin of ultrahigh–pressure lherzolites,” Science 278 (5338), 702–707 (1997).

    Article  Google Scholar 

  29. S. E. Haggerty, “The chemistry and genesis of opaque minerals in kimberlites,” Phys. Chem. Earth. 9, 295–307 (1975).

    Article  Google Scholar 

  30. B. Harte “Mantle peridotites and processes – the kimberlite sample,” In: Continental Basalts and Mantle Xenoliths, Ed. by C. J. Hawkesworth and M. J. Norry, (Shiva, Cheshire, 1983), pp. 46–91.

    Google Scholar 

  31. J. Hermann, H. S. C. O’Neill, and A. J. Berry, “Titanium solubility in olivine in the system TiO2–MgO–SiO2: no evidence for an ultra-deep origin of Ti-bearing olivine,” Contrib. Mineral. Petrol. 148, 746–760 (2005).

    Article  Google Scholar 

  32. S. L. Hwang, P. Shen, H. T. Chu, and T. F. Yui, “Nanometer-size α-PbO2–type TiO2 in garnet: a thermobarometer for ultrahigh-pressure metamorphism,” Science 288 (5464), 321–324 (2000).

    Article  Google Scholar 

  33. T. Irifune, M. Miyashita, T. Inoue, J. Ando, K. Funakoshi, and W. Utsumi, “High-pressure phase transformation in CaMgSi2O6 and implications for origin of ultra-deep diamond inclusions,” Geophys. Res. Lett. 27, 3541–3544 (2000).

    Article  Google Scholar 

  34. F. V. Kaminsky, O. D. Zakharchenko, W. L. Griffin, D. M. D. Channer, and G. K. Khachatryan-Blinova, “Diamond from the Guaniamo area, Venezuela,” Can. Mineral. 38 (6), 1347–1370 (2000).

    Article  Google Scholar 

  35. F. V. Kaminsky, O. D. Zakharchenko, R. Davies, W. L. Griffin, G. K. Khachatryan-Blinova, and A. A. Shiryaev, “Superdeep diamonds from the Juina area, Mato Grosso State, Brazil,” Contrib. Mineral. Petrol. 140, 734–753 (2001).

    Article  Google Scholar 

  36. F. V. Kaminsky, R. Wirth, and A. Schreiber, “A microinclusion of lower–mantle rock and other mineral and nitrogen lower–mantle inclusions in a diamond,” Can. Mineral. 53 (1), 83–104 (2015).

    Article  Google Scholar 

  37. A. V. Kargin, L. V. Sazonova, A. A. Nosova, N. M. Lebedeva, V. V. Tretyachenko, and A. Abersteiner, “Cr-rich clinopyroxene megacrysts from the Grib kimberlite, Arkhangelsk province, Russia: relation to clinopyroxene–phlogopite xenoliths and evidence for mantle metasomatism by kimberlite melts,” Lithos 292–293, 34–48 (2017a).

    Article  Google Scholar 

  38. T. Kato, A. E. Ringwood, and T. Irifune, “Experimental determination of element partitioning between silicate perovskites, garnets and liquids: constraints on early differentiation of the mantle,” Earth Planet Sci Lett. 89 (1), 123–145 (1988).

    Article  Google Scholar 

  39. A. Kubo, T. Suzuki, and M. Akaogi, “High pressure phase equilibria in the system CaTiO3–CaSiO3: stability of perovskite solid solutions,” Phys. Chem. Mineral. 24 (7), 488–494 (1997).

    Article  Google Scholar 

  40. Y. O. Larionova, L. V. Sazonova, N. M. Lebedeva, A. A. Nosova, V. V. Tretyachenko, and A. V. Kargin, “Kimberlite age in the Arkhangelsk Province, Russia: isotopic geochronologic Rb–Sr and 40Ar/39Ar and mineralogical data on phlogopite,” Petrology 24, 562–593 (2016).

    Article  Google Scholar 

  41. J. A. Linton, Y. Fei, and A. Navrotsky, “The MgTiO3–FeT-iO3 join at high pressure and temperature,” Am. Mineral. 84, 1595–1603 (1999).

    Article  Google Scholar 

  42. B. A. Litvinovsky, I. M. Steele, and S. M. Wickham, “Silicic magma formation in overthickened crust: melting of charnockite and leucogranite at 15, 20 and 25 kbar,” J. Petrol. 41, 717–737 (2000).

    Article  Google Scholar 

  43. B. Mason, “Aluminum–titanium-rich pyroxenes, with special reference to the Allende meteorite,” Am. Mineral. 59, 1198–1202 (1974).

    Google Scholar 

  44. E. A. Matrosova, A. V. Bobrov, L. Bindi, D. Y. Pushcharovsky, and T. Irifune, “Titanium–rich phases in the Earth’s transition zone and lower mantle: Evidence from experiments in the system MgO–SiO2–TiO2 (±Al2O3) at 10–24 GPa and 1600°C,” Lithos, 105539 (2020).

  45. W. F. McDonough and S. S. Sun, “The composition of the Earth,” Chem. Geol. 120 (3–4), 223–253 (1995).

    Article  Google Scholar 

  46. A. Mehta, K. Leinenweber, and A. Navrotsky, “Calorimetric study of high pressure polymorphism in FeTiO3: the stability of the perovskite phase,” Phys. Chem. Mineral. 21, 207–212 (1994).

    Article  Google Scholar 

  47. H. O. Meyer and N. Z. Boctor, “Sulfide-oxide minerals in eclogite from Stockdale kimberlite, Kansas,” Contrib. Mineral. Petrol. 52 (1), 57–68 (1975).

    Article  Google Scholar 

  48. H. O. Meyer and M. E. McCallum, “Mineral inclusions in diamonds from the Sloan kimberlites, Colorado,” J. Geol. 94 (4), 600–612 (1986).

    Google Scholar 

  49. F. Nestola, A. D. Burnham, L. Peruzzo, L. Tauro, M. Alvaro, M. J. Walter, M. Gunter, C. Anzolini, and S. C. Kohn, “Tetragonal Almandine–Pyrope Phase, TAPP: finally a name for it, the new mineral jeffbenite,” Mineral. Mag. 80 (7), 1219–1232 (2016).

    Article  Google Scholar 

  50. F. N. Nestola, Korolev, M. Kopylova, N. Rotiroti, D. G. Pearson, M. G. Pamato, M. Alvaro, L. Peruzzo, J. J. Gurney, A. E. Moore, and J. Davidson, “CaSiO3 perovskite in diamond indicates the recycling of oceanic crust into the lower mantle,” Nature 555 (7695), 237–241 (2018).

    Article  Google Scholar 

  51. P. H. Nixon and E. Condliffe, “Yimengite of K–Ti metasomatic origin in kimberlitic rocks from Venezuela,” Mineral. Mag. 53 (371), 305–309 (1989).

    Article  Google Scholar 

  52. J. S. Olsen, L. Gerward, and J. Z. Jiang, “On the rutile/α-PbO2-type phase boundary of TiO2,” J. Phys Chem Solids. 60(2), 229–233 (1999).

    Article  Google Scholar 

  53. M. Pertermann and M. M. Hirschmann, “Anhydrous partial melting experiments on MORB-like eclogite: phase relations, phase compositions and mineral–melt partitioning of major elements at 2–3 GPa,” J. Petrol. 44 (12), 2173–2201 (2003).

    Article  Google Scholar 

  54. A. Proyer, G. Habler, R. Abart, R. Wirth, K. Krenn, and G. Hoinkes, “TiO2 exsolution from garnet by open–system precipitation: Evidence from crystallographic and shape preferred orientation of rutile inclusions,” Contrib. Mineral. Petrol. 166 (1), 211–234 (2013).

    Article  Google Scholar 

  55. J. Prytulak and T. Elliott “TiO2 enrichment in ocean island basalts,” Earth Planet Sci Lett. 263 (3–4), 388–403 (2007).

    Article  Google Scholar 

  56. E. Raber and S. E. Haggerty, In Kimberlites, Diatremes, and Diamonds: Their Geology, Petrology, and Geochemistry, Ed. by F.R. Boyd and H. O. A. Meyer, Proceedings of the 2rid International Kimberlite Conference (American Geophysical Union, Washington, 1979), pp. 229–240.

  57. A. E. Ringwood and J. F. Lovering, “Significance of pyroxene–ilmenite intergrowths among kimberlite xenoliths,” Earth Planet Sci Lett. 7 (4), 371–375 (1970).

    Article  Google Scholar 

  58. A. C. Risold, V. Trommsdorff, and B. Grobéty, “Genesis of ilmenite rods and palisades along humite–type defects in olivine from Alpe Arami,” Contrib. Mineral. Petrol. 140 (5), 619–628 (2001).

    Article  Google Scholar 

  59. J. L. Robert, “Titanium solubility in synthetic phlogopite solid solutions,” Chem. Geol. 17, 213–227 (1976).

    Article  Google Scholar 

  60. P. L. Roeder and D. J. Schulze, “Crystallization of groundmass spinel in kimberlite,” J. Petrol. 49 (8), 1473–1495 (2008).

    Article  Google Scholar 

  61. D. J. Schulze, “Origins of chromian and aluminous spinel macrocrysts from kimberlites in southern Africa,” Can. Mineral. 39 (2), 361–376 (2001).

    Article  Google Scholar 

  62. F. Scordari, E. Schingaro, C. Malitesta, and G. Pedrazzi, “Crystal chemistry of Ti-bearing garnets with volcanic origin,” EAEJA, 5605 (2003).

  63. E. A. Sirotkina, A. V. Bobrov, A. V. Spivak, L. Bindi, and D. Y. Pushcharovsky, “X-ray single-crystal and Raman study of (Na0.86Mg0.14)(Mg0.57Ti0.43)Si2O6, a new pyroxene synthesized at 7 GPa and 1700°C,” Phys. Chem. Mineral. 43 (10), 731–738 (2016).

    Article  Google Scholar 

  64. N. V. Sobolev and J. G. Lavrent’ev, “Isomorphic sodium admixture in garnets formed at high pressures,” Contrib. Mineral. Petrol. 31 (1), 1–12 (1971).

    Article  Google Scholar 

  65. N. V. Sobolev and E. S. Yefimova “Composition and petrogenesis of Ti-oxides associated with diamonds,” Int. Geol. Rev. 42 (8), 758–767 (2000).

    Article  Google Scholar 

  66. J. Tang and S. Endo “P–T boundary of α-PbO2 type and baddeleyite type high-pressure phases of titanium dioxide,” J. Am. Ceramic Society 76 (3), 796–798 (1993).

    Article  Google Scholar 

  67. S. Tappe, S. F. Foley, G. A. Jenner, L. M. Heaman, B. A. Kjarsgaard, R. L. Romer, A. Stracke, N. Joyce, and J. Hoefs, “Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic craton,” J. Petrol. 47 (7), 1261–1315 (2006).

    Article  Google Scholar 

  68. L. A. Tompkins and S. E. Haggerty, “Groundmass oxide minerals in the Koidu kimberlite dikes, Sierra Leone, West Africa,” Contrib. Mineral. Petrol. 91 (3), 245–263 (1985).

    Article  Google Scholar 

  69. C. Wagner and D. Velde, “The mineralogy of K-richterite-bearing lamproites,” Am. Mineral. 71(1–2), 17–37 (1986).

    Google Scholar 

  70. M. J. Walter, G. P. Bulanova, L. S. Armstrong, S. Keshav, J. D. Blundy, G. Gudfinnsson, O. T. Lord, A. R. Lennie, S. M. Clark, C. B. Smith, and L. Gobbo, “Primary carbonatite melt from deeply subducted oceanic crust,” Nature 454, 623–625 (2008).

    Article  Google Scholar 

  71. M. J. Walter, S. C. Kohn, D. Araujo, G. P. Bulanova, C. B. Smith, E. Gaillou, J. Wang, A. Steele, and S. B. Shirey, “Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions,” Science 334, 54–57 (2011).

    Article  Google Scholar 

  72. F. G. Waters, “A suggested origin of MARID xenoliths in kimberlites by high pressure crystallization of an ultrapotassic rock such as lamproite,” Contrib. Mineral. Petrol. 95 (4), 523–533 (1987).

    Article  Google Scholar 

  73. B. A. Wechsler, C. T. Prewitt, and J. J. Papike, “Chemistry and structure of lunar and synthetic armalcolite,” Earth Planet Sci Lett. 29 (1), 91–103 (1976).

    Article  Google Scholar 

  74. B. J. Wood and J. D. Blundy, “Trace element partitioning under crustal and uppermost mantle conditions: the influences of ionic radius, cation charge, pressure, and temperature,” Treatise on Geochemistry 2, 395–424 (2003).

    Article  Google Scholar 

  75. X. Wu, D. Meng, and Y. Han, “α–PbO2–type nanophase of TiO2 from coesite–bearing eclogite in the Dabie Mountains, China,” Am Mineral. 90 (8–9), 1458–1461 (2005).

    Article  Google Scholar 

  76. X. Wu, E. Holbig, and G. Steinle–Neumann, “Structural stability of TiO2 at high pressure in density–functional theory based calculations,” J Phys: Condensed Matter. 22 (29), 295501 (2010).

    Google Scholar 

  77. D. A. Zedgenizov, H. Kagi, V. S. Shatsky, and A. L. Ragozin, “Local variations of carbon isotope composition in diamonds from São–Luis (Brazil): evidence for heterogenous carbon reservoir in sublithospheric mantle,” Chem. Geol. 363, 114–124 (2014).

    Article  Google Scholar 

  78. D. Zedgenizov, H. Kagi, E. Ohtani, T. Tsujimori, and K. Komatsu, “Retrograde phases of former bridgmanite inclusions in superdeep diamonds,” Lithos 370–371, 105659 (2020).

    Article  Google Scholar 

  79. M. F. Zhou, P. T. Robinson, J. Malpas, and Z. Li, “Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt–rock interaction and chromite segregation in the upper mantle,” J. Petrol. 37 (1), 3–21 (1996).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to O.G. Safonov and D.A. Zedgenizov for valuable comments and recommendations, which allowed us to improve the manuscript.

Funding

The study was carried out according to the scientific research plan of the Laboratory of Deep Geospheres, Geological Faculty, Moscow State University, and was supported by the Ministry of Education and Science of the Russian Federation, project no. 075-15-2020-802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Matrosova.

Additional information

Translated by A. Bobrov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matrosova, E.A., Bobrov, A.V., Bindi, L. et al. Titanium Minerals and Their Assemblages in the Earth’s Mantle: A Review of Natural and Experimental Data. Geochem. Int. 59, 725–742 (2021). https://doi.org/10.1134/S001670292108005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001670292108005X

Keywords:

Navigation