Skip to main content
Log in

Variation of Plasma Pressure at the Auroral Oval Latitudes before, during, and after the Isolated Geomagnetic Substorm on December 22, 2008

  • Published:
Geomagnetism and Aeronomy Aims and scope Submit manuscript

Abstract

The change in plasma pressure at the latitudes of the auroral oval before, during, and after the isolated geomagnetic substorm on December 22, 2008, were studied using data from the F13, 15, 16, and 17 DMSP satellites. One feature of the studied event was a long period of values of AL index that were close to zero. During this time, there was a more than double increase in the dynamic pressure of the solar wind. The projection of pressure maxima on the equatorial plane was carried out using models of the geomagnetic field and a model of the pressure distribution in the equatorial plane. It was shown that the maximum plasma-pressure values at the latitudes of the auroral oval increase with increasing dynamic pressure of the solar wind during the magnetically quiet period to substorm. The maximum values of the plasma pressure for the studied period are recorded during the expansion phase of the substorm. A decrease in the solar-wind dynamic pressure to values close to the values during the magnetically quiet time before the substorm was not accompanied by a drop in the plasma pressure after the substorm. The difference between the plasma pressure dynamics during an isolated substorm and the pressure dynamics during a substorm taking place during magnetic storm is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Antonova, E.E., Vorobjev, V.G., Kirpichev, I.P., and Yagodkina, O.I., Comparison of the plasma pressure distributions over the equatorial plane and at low altitudes under magnetically quiet conditions, Geomagn. Aeron. (Engl. Transl.), 2014, vol. 54, no. 3, pp. 300–303. https://doi.org/10.1134/S0016793214030025

  2. Antonova, E.E., Vorobjev, V.G., Kirpichev, I.P., Yagodkina, O.I., and Stepanova, M.V., Problems with mapping the auroral oval and magnetospheric substorms, Earth, Planets Space, 2015, vol. 67, id 166. https://doi.org/10.1186/s40623-015-0336-6

  3. Antonova, E.E., Stepanova, M., Kirpichev, I.P., et al., Structure of magnetospheric current systems and mapping of high latitude magnetospheric regions to the ionosphere, J. Atmos. Sol.-Terr. Phys., 2018, vol. 177, pp. 103–114. https://doi.org/10.1016/j.jastp.2017.10.013

    Article  Google Scholar 

  4. Baumjohann, W., Paschmann, G., and Cattell, C.A., Average plasma properties in the central plasma sheet, J. Geophys. Res., 1989, vol. 94, no. 6, pp. 6597–6606. https://doi.org/10.1029/JA094iA06p06597

    Article  Google Scholar 

  5. Dubyagin, S.V., Sergeev, V.A., Carlson, C.W., Marple, S.R., Pulkkinen, T.I., and Yahnin, A.G., Evidence of near-Earth breakup location, Geophys. Res. Lett., 2003, vol. 30, no. 6, 1282. https://doi.org/10.1029/2002GL016569

    Article  Google Scholar 

  6. Kirpichev, I.P. and Antonova, E.E., Plasma pressure distribution in the equatorial plane of the Earth’s magnetosphere at geocentric distances of 6–10 RE according to the international THEMIS mission data, Geomagn. Aeron. (Engl. Transl.), 2011, vol. 51, no. 4, pp. 450–455. https://doi.org/10.1134/S0016793211040049

  7. Kirpichev, I.P., Yagodkina, O.I., Vorobjev, V.G., and Antonova, E.E., Position of projections of the nightside auroral oval equatorward and poleward edges in the magnetosphere equatorial plane, Geomagn. Aeron. (Engl. Transl.), 2016, vol. 56, no. 4, pp. 407–414. https://doi.org/10.1134/S001679321604006X

  8. Kozelova, T.V. and Kozelov, B.V., Substorm-associated explosive magnetic field stretching near the earthward edge of the plasma sheet, J. Geophys. Res.: Space Phys., 2013, vol. 118, pp. 3323–3335. https://doi.org/10.1002/jgra.50344

    Article  Google Scholar 

  9. Kubyshkina, M.V., Sergeev, V.A., and Pulkkinen, T.I., Hybrid input algorithm: An event-oriented magnetospheric model, J. Geophys. Res., 1999, vol. 104, no. A11, pp. 24977–24993. https://doi.org/10.1029/1999JA900222

    Article  Google Scholar 

  10. Lui, A.T.Y., Potential plasma instabilities for substorm expansion onsets, Space Sci. Rev., 2004, vol. 113, no. 1, pp. 127–206. https://doi.org/10.1023/B:SPAC.0000042942.00362.4e

    Article  Google Scholar 

  11. Lui, A.T.Y. and Hamilton, D.C., Radial profiles of quiet time magnetospheric parameters, J. Geophys. Res., 1992, vol. 97, no. A12, pp. 19325–19332. https://doi.org/10.1029/92JA01539

    Article  Google Scholar 

  12. Newell, P.T. and Gjerloev, J.W., Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power, J. Geophys. Res., 2011, vol. 116, A12211. https://doi.org/10.1029/2011JA016779

    Article  Google Scholar 

  13. Newell, P.T., Feldstein, Y.I., Galperin, Yu.I., and Meng, C.-I., Morphology of nightside precipitation, J. Geophys. Res., 1996, vol. 101, no. A5, pp. 10737–10778. https://doi.org/10.1029/95JA03516

    Article  Google Scholar 

  14. Newell, P.T., Sergeev, V.A., Bikkuzina, G.R., and Wing, S., Characterizing the state of the magnetosphere: Testing the ion precipitation maxima latitude (b2i) and the ion isotropy boundary, J. Geophys. Res., 1998, vol. 103, no. A3, pp. 4739–4746. https://doi.org/10.1029/97JA03622

    Article  Google Scholar 

  15. Newell, P.T., Sotireli, T., Lio, K., Meng, C.-I., and Rich, F.J., A nearly universal solar wind–magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 2007, vol. 112, A01206. https://doi.org/10.1029/2006JA012015

    Article  Google Scholar 

  16. Ovchinnikov, I.L. and Antonova, E.E., Turbulent transport of the Earth magnetosphere: Review of the results of observations and modeling, Geomagn. Aeron. (Engl. Transl.), 2017, vol. 57, no. 6, pp. 655–663. https://doi.org/10.1134/S0016793217060081

  17. Paschmann, G., Haaland, S., and Treumann, R., Auroral plasma physics, Space Sci. Rev., 2002, vol. 103, pp. 1–485. https://doi.org/10.1023/A:1023030716698

    Article  Google Scholar 

  18. Stepanova, M.V., Antonova, E.E., Bosqued, J.M., Kovrazhkin, R.A., and Aubel, K.R., Asymmetry of auroral electron precipitations and its relationship to the substorm expansion phase onset, J. Geophys. Res., 2002, vol. 107, 1134. https://doi.org/10.1029/2001JA003503

    Article  Google Scholar 

  19. Stepanova, M.V., Antonov, E.E., Bosqued, J.M., and Kovrazhkin, R.A., Radial plasma pressure gradients in the high latitude magnetosphere as sources of instabilities leading to the substorm onset, Adv. Space Res., 2004, vol. 33, pp. 761–768. https://doi.org/10.1016/S0273-1177(03)00634-3

    Article  Google Scholar 

  20. Stepanova, M., Antonova, E.E., and Bosqued, J.-M., Study of plasma pressure distribution in the inner magnetosphere using low-altitude satellites and its importance for the large-scale magnetospheric dynamics, Adv. Space Res., 2006, vol. 38, pp. 631–1636. https://doi.org/10.1016/j.asr.2006.05.013

    Article  Google Scholar 

  21. Stepanova, M., Antonova, E.E., and Bosqued, J.M., Radial distribution of the inner magnetosphere plasma pressure using low-altitude satellite data during geomagnetic storm: The March 1–8, 1982 event, Adv. Space Res., 2008, vol. 41, pp. 1658–1665. https://doi.org/10.1016/j.asr.2007.06.002

    Article  Google Scholar 

  22. Stepanova, M., Antonova, E.E., Moya, P.S., Pinto, V.A., and Valdivi, J.A., Multisatellite analysis of plasma pressure in the inner magnetosphere during the 1 June 2013 geomagnetic storm, J. Geophys. Res.: Space Phys., 2019, vol. 124, pp. 1187–1202. https://doi.org/10.1029/2018JA025965

    Article  Google Scholar 

  23. Tsyganenko, N.A., A model of the near magnetosphere with a dawn–dusk asymmetry 1. Mathematical structure, J. Geophys. Res.: Space Phys., 2002a, vol. 107, no. A8. https://doi.org/10.1029/2001JA000219

  24. Tsyganenko, N.A., A model of the near magnetosphere with a dawn–dusk asymmetry 2. Parameterization and modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res.: Space Phys., 2002b, vol. 107, no. A8. https://doi.org/10.1029/2001JA000220

  25. Tsyganenko, N.A. and Mukai, T., Tail plasma sheet models derived from geotail particle data, J. Geophys. Res., 2003, vol. 108, no. A3, 1136. https://doi.org/10.1029/2002JA009707

    Article  Google Scholar 

  26. Tsyganenko, N.A. and Sitnov, M.I., Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res.: Space Phys., 2005, vol. 110, no. A3. https://doi.org/10.1029/2004JA010798

  27. Tsyganenko, N.A. and Sitnov, M.I., Magnetospheric configurations from a high resolution data-based magnetic field model, J. Geophys. Res.: Space Phys., 2007, vol. 112, A06225. https://doi.org/10.1029/2007JA012260

    Article  Google Scholar 

  28. Vorobjev, V.G., Yagodkina, O.I., Antonova, E.E., and Zverev, V.L., Influence of solar wind plasma parameters on the intensity of isolated magnetospheric substorms, Geomagn. Aeron. (Engl. Transl.), 2018a, vol. 58, no. 3, pp. 295–306. https://doi.org/10.1134/S0016793218030155

  29. Vorobjev, V.G., Antonova, E.E., and Yagodkina, O.I., How the intensity of isolated substorms is controlled by the solar wind parameters, Earth Planets Space, 2018b, vol. 70, id 148. https://doi.org/10.1186/s40623-018-0922-5

  30. Vorobjev, V.G., Yagodkina, O.I., and Antonova, E.E., Ion pressure at the auroral precipitation boundaries and its relationship with the solar wind dynamic pressure, Geomagn. Aeron. (Engl. Transl.), 2019, vol. 59, no. 5, pp. 543–553. https://doi.org/10.1134/S0016793219050141

  31. Wang, C.-P., Lyon, L.R., Nagai, T., and Samson, J.C., Midnight radial profiles of the quiet and growth-phase plasma sheet: The Geotail observations, J. Geophys. Res., 2004, vol. 109, A12201. https://doi.org/10.1029/2004JA010590

    Article  Google Scholar 

  32. Wang, C.-P., Gkioulidou, M., Lyons, L.R., Wolf, R.A., Angelopoulos, V., Nagai, T., Weygand, J.M., and Lui, A.T.Y., Spatial distributions of ions and electrons from the plasma sheet to the inner magnetosphere: Comparisons between THEMIS-Geotail statistical results and the Rice convection model, J. Geophys. Res.: Space Phys., 2011, vol. 116, A11216. https://doi.org/10.1029/2011JA016809

    Article  Google Scholar 

  33. Wang, C.-P., Yue, C., Zaharia, S., Xing, X., Lyons, L., Angelopoulos, V., Nagai, V.T., and Lui, T., Empirical modeling of plasma sheet pressure and three-dimensional force-balanced magnetospheric magnetic field structure: 1. Observations, J. Geophys. Res.: Space Phys., 2013, vol. 118, pp. 6154–6165. https://doi.org/10.1002/jgra.50585

    Article  Google Scholar 

  34. Wing, S. and Newell, P.T., Central plasma sheet ion properties as inferred from ionospheric observations, J. Geophys. Res., 1998, vol. 103, no. A4, pp. 6785–6800. https://doi.org/10.1029/97JA02994

    Article  Google Scholar 

  35. Wing, S., Gkioulidou, M., Johnson, J.R., Newell, P.T., and Wang, C.-P., Auroral particle precipitation characterized by the substorm cycle, J. Geophys. Res.: Space Phys., 2013, vol. 118, pp. 1022–1039. https://doi.org/10.1002/jgra.5016

    Article  Google Scholar 

Download references

5. ACKNOWLEDGMENTS

The authors are grateful to the team of developers of the DMSP satellite equipment and the creators of the OMNI database.

Funding

This work was supported by a grant from Consejo Nacional de Ciencia, Tecnología e Innovación Tecnológica (CONCYTEC) (Convenio no. N-031-218), Peru.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Rojas Gamarra, J. Gonzalez, M. V. Stepanova or E. E. Antonova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M. Rojas Gamarra, Gonzalez, J., Stepanova, M.V. et al. Variation of Plasma Pressure at the Auroral Oval Latitudes before, during, and after the Isolated Geomagnetic Substorm on December 22, 2008. Geomagn. Aeron. 60, 452–460 (2020). https://doi.org/10.1134/S0016793220040131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016793220040131

Navigation