Skip to main content
Log in

Chemical Composition, U–Th–Pb Age, and Geodynamic Setting of Metavolcanic Filla Series (Rauer Islands, East Antarctica)

  • Published:
Geotectonics Aims and scope

Abstract

An assemblage of mafic granulites (schists), plagiogneisses, and metasedimentary rocks, which is referred to as the Filla Series, is exposed in the Rauer Islands (opposite the eastern coast of the Prydz Bay). The chemistry and Nd isotope composition of the schists, which are interpreted as metavolcanics, are characterized; the results of U–Th–Pb dating (SHRIMP) of zircons from these rocks are presented. The data obtained indicate that the protolith of these rocks crystallized ca. 1500 Ma ago and that the rocks later underwent thermal events at ca. 1000 Ma and 545–515 Ma. The relatively high εNd(t) values, ranging from 2 to 4.5 for most samples, indicate the primitive composition of the mantle source and the limited extent of crustal contamination. The specific chemical composition of these rocks suggests that the Filla Series was formed in a convergent (back-arc(?)) setting with contributions from both plume and lithospheric sources. The apparently heterogeneous rock assemblage may be a product of tectonic interaction between the active continental margin and oceanic plateau. The obtained Early Mesoproterozoic age of the mafic rocks of the Filla Series argues for correlation of the Rauer Islands area with the long-lived Musgrave–Albany–Fraser–Wilkes Proterozoic (super) province in Australia and Antarctica, on the one hand, and the Eastern Ghats Province in India, on the other. The formation of the Early Mesoproterozoic Filla Series suggests that the development of the hypothetical paleocean (its convergent margins) did not terminate during the Paleoproterozoic but continued into the Mesoproterozoic. Correlation with the Musgrave–Albany–Fraser–Wilkes (super) province suggests a shared geological evolution of large crustal blocks, represented by the Prydz Bay coast and the Australian–Antarctic block starting from the Early Mesoproterozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. T. B. Bayanova, Age of Reference Geologic Complexes in the Kola Region with Respect to Duration of Magmatism Processes (Nauka, St. Petersburg, 2004) [in Russian].

    Google Scholar 

  2. N. A. Bozhko, “Supercontinental cyclicity in the Earth’s evolution,” Moscow Univ. Geol. Bull. 64, 75–91 (2009).

    Google Scholar 

  3. N. A. Bozhko, “On two types of supercontinental cyclicity,” Moscow Univ. Geol. Bull. 66, 313–322 (2011).

    Google Scholar 

  4. V. L. Ivanov and E. N. Kamenev, Geology and Mineral Resources of Antarctica (Nedra, Moscow1990) [in Russian].

    Google Scholar 

  5. M. G. Ravich and E. N. Kamenev, Crystalline Basement of the Antarctic Platform (Gidrometeoizdat, Leningrad, 1972) [in Russian].

    Google Scholar 

  6. S. A. Svetov, A. V. Stepanova, S. Yu. Chazhengina, E.  N. Svetova, A. I. Mikhailova, Z. P. Rybnikova, A.  S. Paramonov, V. L. Utitsina, V. S. Kolodei, and M. V. Ekhova, “Precise ICP-MS and LA-ICP-MS analysis of rock and mineral composition: Technique application and assessment of accuracy of the obtained results on the example of Early Precambrian mafic complexes,” in Vol. 7 of Tr. Karel. Nauchn. Tsentr Ross. Akad. Nauk, Ed. by A. F. Titov (Karel. Nauchn. Tsentr Ross. Akad. Nauk, Petrozavodsk, 2015), pp. 54–73.

  7. B. V. Beliatsky, A. A. Laiba, and E. V. Mikhalsky, “U‒Pb zircon age of the metavolcanic rocks of Fisher Massif (Prince Charles Mountains, East Antarctica),” Antarct. Sci. 6, 355−358 (1994).

    Google Scholar 

  8. A. Bhandari, N. C. Pant, S. K. Bhowmik, and S. Goswami, “1.6 Ga ultrahigh-temperature granulite metamorphism in the Central Indian Tectonic Zone: Insights from metamorphic reaction history, geothermobarometry and monazite chemical ages,” Geol. J. 46, 198–216 (2011).

    Google Scholar 

  9. S. K. Bhownik, S. A. Wilde, and A. Bhandari, “Zircon U–Pb/Lu–Hf and monazite chemical dating of the Tirodi biotite gneiss: Implication for Latest Paleoproterozoic to Early Mesoproterozoic orogenesis in the Central Indian Tectonic Zone,” Geol. J. 46, 574–596 (2011).

    Google Scholar 

  10. S. K. Bhownik, S. A. Wilde, A. Bhandari, T. Pal, and N. C. Pant, “Growth of the greater Indian landmass and its assembly in Rodinia: Geochronological evidence from the Central Indian Tectonic Zone,” Gondwana Res. 22, 54–72 (2012).

    Google Scholar 

  11. L. P. Black, S. L. Kamo, C. M. Allen, J. N. Aleinikoff, D. W. Davis, R. J. Korsch, and C. Foudoulis, “TEMORA 1: A new zircon standard for Phanerozoic U–Pb geochronology,” Chem. Geol. 200, 155–170 (2003).

    Google Scholar 

  12. S. Bose and S. Dasgupta, “Eastern Ghats Belt, Grenvillian-age tectonics and the evolution of the Greater Indian Landmass: A critical perspective,” J. Indian Inst. Sci. 98, 345–363 (2018).

    Google Scholar 

  13. S. Bose, D. J. Dunkley, S. Dasgupta, K. Das, and M.  Arima, “India-Antarctica-Australia-Laurentia connection in the Paleoproterozoic–Mesoproterozoic revisited: Evidence from new zircon U–Pb and monazite chemical age data from the Eastern Ghats Belt, India,” Geol. Soc. Am. Bull. 123, 2031–2049 (2011).

    Google Scholar 

  14. A. Bouvier, J. D. Vervoort, and P. J. Patchett, “The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets,” Earth Planet. Sci. Lett. 273, 48–57 (2008).

    Google Scholar 

  15. T. Chakraborty, D. Upadhyay, S. Ranjan, K. L. Pruseth, and J. K. Nanda, “The geological evolution of the Gangpur Schist Belt, eastern India: Constraints on the formation of the Greater Indian Landmass in the Proterozoic,” J. Metamorph. Geol. 37, 113–151 (2019).

    Google Scholar 

  16. K. C. Condie, “High field strength element ratios in Archean basalts: A window to evolving sources of mantle plumes?,” Lithos 79, 491–504 (2005).

    Google Scholar 

  17. B. De Waele and S. A. Pisarevsky, “Geochronology, paleomagnetism and magnetic fabric of metamorphic rocks in the northeast Fraser Belt, Western Australia,” Aust. J. Earth Sci. 55, 605–621 (2008).

    Google Scholar 

  18. S. Dasgupta, S. Bose, and K. Das, “Tectonic evolution of the Eastern Ghats Belt, India,” Precambrian Res. 227, 247–258 (2013).

    Google Scholar 

  19. S. Dasgupta, S. Bose, S. K. Bhowmik, and P. Sengupta, “The Eastern Ghats Belt, India, in the context of supercontinent assembly,” in Crustal Evolution of India and Antarctica: The Supercontinent Connection, Vol. 457 of Geol. Soc. London, Spec. Publ., Ed. by S. Dasgupta and N. C. Pant (2017), pp. 87–104.

  20. T. Deshmukh, N. Prabhakar, A. Bhattacharya, and K. Madhavan, “Late Paleoproterozoic clockwise P–T history in the Mahakoshal Belt, Central Indian Tectonic Zone: Implications for Columbia supercontinent assembly,” Precambrian Res. 298, 56–78 (2017).

    Google Scholar 

  21. D. J. DePaolo, Neodymium Isotope Geochemistry: An Introduction (Springer-Verlag, New York, 1989).

    Google Scholar 

  22. What Lies beneath the Western Gawler Craton?: 13GA‑E-G1E Seismic and Magnetotelluric Workshop 2015 Report Book 2015/00029, Ed. by R. A. Dutch, M.  J. Pawley, and T. W. Wise (Dep. State Dev., Adelaide, South Australia, 2015).

    Google Scholar 

  23. R. E. Ernst, M. T. D. Wingate, K. L. Buchan, and Z. X. Li, “Global record of 1600–700 Ma Large Igneous Provinces (LIPs): Implications for the reconstruction of the proposed Nuna (Columbia) and Rodinia supercontinents,” Precambrian Res. 160, 159–178 (2008).

    Google Scholar 

  24. D. A. D. Evans and R. N. Mitchell, “Assembly and breakup of the core of Palaeoproterozoic–Mesoproterozoic supercontinent Nuna,” Geology 39, 443–446 (2011).

    Google Scholar 

  25. I. C. W. Fitzsimons, “Proterozoic basement provinces of southern and southwestern Australia, and their correlation with Antarctica,” in Proterozoic East Gondwana: Supercontinent Assembly and Breakup, Vol. 206 of Geol. Soc. London, Spec. Publ., Ed. by M. Yoshida, B. F. Windley, and S. Dasgupta (London, 2003), pp. 93–130.

  26. S. J. Goldstein and S. B. Jacobsen, “Nd and Sr isotopic systematics of river water suspended material implications for crystal evolution,” Earth Planet. Sci. Lett. 87, 249–265 (1988).

    Google Scholar 

  27. S. L. Harley, “Archaean–Cambrian development of East Antarctica: Metamorphic characteristics and tectonic implications,” in Proterozoic East Gondwana: Supercontinent Assembly and Breakup, Vol. 206 of Geol. Soc. London, Spec. Publ., Ed. by M. Yoshida, B. F. Windley, and S. Dasgupta (London, 2003), pp. 203–230.

  28. S. L. Harley and N. M. Kelly, “Ancient Antarctica: The Archaean of the East Antarctic shield,” in Earth’s Oldest Rocks, in Vol. 15 of Dev. Precambrian Geol., Ed. by M. J. Van Kranendonk, R. H. Smithies, and V. C. Bennett (Elsevier, Amsterdam, 2007), pp. 149–186.

  29. S. L. Harley, I. C. W. Fitzsimons, and Y. Zhao, “Antarctica and supercontinent evolution: Historical perspectives, recent advances and unresolved issues,” in Antarctica and Supercontinent Evolution, Vol. 383 of Geol. Soc. London, Spec. Publ., Ed. by S. L. Harley, I. C. W. Fitzsimons, and Y. Zhao (London, 2013), pp. 1–34.

  30. T. N. Irvine and W. R. A. Baragar, “A guide to the chemical classification of the common volcanic rocks,” Can. J. Earth Sci. 8, 523–548 (1971).

    Google Scholar 

  31. P. D. Kinny, L. P. Black, and J. W. Sheraton, “Zircon ages and distribution of Archaean and Proterozoic rocks in the Rauer Islands,” Antarct. Sci. 5, 193–206 (1993).

    Google Scholar 

  32. P. D. Kinny, L. P. Black, and J. W. Sheraton, “Zircon U–Pb ages and geochemistry of igneous and metamorphic rocks in the northern Prince Charles Mountains,” AGSO J. Aust. Geol. Geophys. 16, 637–654 (1997).

    Google Scholar 

  33. C. L. Kirkland, C. V. Spaggiari, M. J. Pawley, M.  T.  D. Wingate, R. H. Smithies, H. M. Howard, I. M. Tyler, E. A. Belousova, and M. Poujol, “On the edge: U–Pb, Lu–Hf, and Sm–Nd data suggests reworking of the Yilgarn Craton margin during formation of the Albany–Fraser Orogen,” Precambrian Res. 187, 223–247 (2011).

    Google Scholar 

  34. C. L. Kirkland, R. H. Smithies, and C. V. Spaggiari, “Foreign contemporaries – Unraveling disparate isotopic signatures from Mesoproterozoic Central and Western Australia,” Precambrian Res. 265, 218–231 (2015).

    Google Scholar 

  35. X. C. Liu, Y. Zhao, and J. Hu, “Multiple tectonothermal events in the Prydz Belt, East Antarctica, and their relations to assembly of Rodinia and Gondwana,” in Antarctica and Supercontinent Evolution, Vol. 383 of Geol. Soc. London, Spec. Publ., Ed. by S. L. Harley, I. C. W. Fitzsimons, and Y. Zhao (London, 2013), pp. 95–112.

  36. X. C. Liu, B.-M. Jang, Y. Zhao, J. Liu, and L. D. Ren, “Geochemistry and geochronology of Mesoproterozoic basement rocks from the eastern Amery Ice Shelf and southwestern Prydz Bay, East Antarctica: Implications for a long-lived magmatic accretion in a continental arc,” Am. J. Sci. 314, 508–547 (2014).

    Google Scholar 

  37. X. Liu, W. Wang, Y. Zhao, J. Liu, H. Chen, Y. Cui, and B. Song, “Early Mesozoic arc magmatism followed by early Neoproterozoic granulite facies metamorphism with near-isobaric cooling path at Mount Brown, East Antarctica,” Precambrian Res. 284, 30–48 (2016).

    Google Scholar 

  38. K. R. Ludwig, User’s Manual for Isoplot/Ex, Version 3.00, A Geochronological Toolkit for Microsoft Excel, No. 4 of Berkeley Geochronol. Center Spec. Publ. (Berkeley, USA, 2003).

  39. E. V. Mikhalsky, J. W. Sheraton, A. A. Laiba, R. J. Tingey, D. E. Thost, E. N. Kamenev, and L. V. Fedorov, Geology of the Prince Charles Mountains, Antarctica, Vol. 247 of AGSO Bull. (2001).

  40. E. V. Mikhalsky, B. V. Belyatsky, S. L. Presnyakov, S. G. Skublov, V. P. Kovach, N. V. Rodionov, A. V. Antonov, A. K. Saltykova, and S. A. Sergeev, “The geological composition of the hidden Wilhelm II Land in East Antarctica: SHRIMP zircon, Nd isotopic and geochemical studies with implications for Proterozoic supercontinent reconstructions,” Precambrian Res. 258, 171–185 (2015).

    Google Scholar 

  41. E. V. Mikhalsky, N. L. Alexeev, I. A. Kamenev, M. S. Egorov, and E. L. Kunakkuzin, “Mafic dykes in the Rauer Islands and Vestfold Hills (East Antarctica): A chemical and Nd isotopic comparison,” Precambrian Res. 329, 273–293 (2019).

    Google Scholar 

  42. S. Mohanty, “Precambrian continent assembly and dispersal events of South Indian and East Antarctic Shields,” Int. Geol. Rev. 57, 1992–2027 (2015). https://doi.org/10.1080/00206814.2015.1048751

    Article  Google Scholar 

  43. L. J. Morrissey, M. Hand, and D. E. Kelsey, “A curious case of agreement between conventional thermobarometry and phase equilibria modeling in granulites: New constraints on P–T estimates in the Antarctica segment of the Musgrave–Albany–Fraser–Wilkes Orogen,” J. Metamorph. Geol. 35, 1023–1050 (2017).

    Google Scholar 

  44. D. R. Nelson, J. S. Myers, and A. Nutman, “Chronology and evolution of the middle Proterozoic Albany–Fraser Orogen, Western Australia,” Aust. J. Earth Sci. 42, 481–495 (1995).

    Google Scholar 

  45. J. A. Pearce, “Trace element characteristics of lavas from destructive plate boundaries,” in Andesites, Ed. by R. S. Thorps (Wiley, New York, 1982), pp. 525–548.

    Google Scholar 

  46. J. A. Pearce, “Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust,” Lithos 100, 14−48 (2008).

    Google Scholar 

  47. L. J. Pesonen, S. Mertanen, and T. Veikkolainen, “Paleo-Mesoproterozoic supercontinents – a paleomagnetic view,” Geophysica 48, 5–47 (2012).

    Google Scholar 

  48. S. Rekha, D. Upaghyay, A. Bhattacharya, E. Kooijman, S. Goon, S. Mahato, and N. C. Pant, “Lithostructural and chronological constraints for tectonic restoration of Proterozoic accretion in the eastern Indian Precambrian shield,” Precambrian Res. 187, 313–333 (2011).

    Google Scholar 

  49. N. M. W. Roberts, “The boring billion? – Lid tectonics, continental growth and environmental change associated with the Columbia supercontinent,” Geosci. Front. 4, 681–691 (2013).

    Google Scholar 

  50. T. Sarkar and V. Schenk, “Two-stage granulite formation in a Proterozoic magmatic arc (Ongole domain of the Eastern Ghats Belt, India): Part I. Petrology and pressure-temperature evolution,” Precambrian Res. 255, 485–509 (2014).

    Google Scholar 

  51. T. Sarkar, V. Schenk, and J. Berndt, “Formation and evolution of a Proterozoic magmatic arc geochemical and geochronological constraints from meta-igneous rocks of the Ongole domain, Eastern Ghats Belt, India,” Contrib. Mineral. Petrol. 169 (2015). https://doi.org/10.1007/s00410-014-1096-1

  52. J. W. Sheraton, D. J. Ellis, and S. M. N. Kuehner, “Rare-earth element geochemistry of Archaean orthogneisses and evolution of the East Antarctic shield,” BMR J. Aust. Geol. Geophys. 9, 207–218 (1985).

    Google Scholar 

  53. J. W. Sheraton, L. P. Black, and A. G. Tindle, “Petrogenesis of plutonic rocks in a Proterozoic granulite-facies terrane — the Bunger Hills, East Antarctica,” Chem. Geol. 97, 163–198 (1992).

    Google Scholar 

  54. J. W. Sheraton, R. J. Tingey, R. L. Oliver, and L. P. Black, Geology of the Bunger Hills–Denman Glacier Region, East Antarctica, Vol. 244 of AGSO Bull. (1995).

  55. Eucla Basement Stratigraphic Drilling Results Release Workshop: Extended Abstracts: Geol. Soc. West. Aust. Record 2015/10, Ed. by C. V. Spaggiari and R. H. Smithies (Perth, 2015).

    Google Scholar 

  56. C. V. Spaggiari, S. Bodorkos, M. Barquero-Molina, I. M. Tyler, and M. T. D. Wingate, Interpreted Bedrock Geology of the South Yilgarn and Central Albany-Fraser Orogen, Western Australia: Geol. Surv. West. Aust. Rec. 2009/10 (Perth, 2009).

  57. S.-S. Sun and W. F. McDonough, “Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes,” in Magmatism in the Ocean Basins, Vol. 42 of Geol. Soc. London, Spec. Publ., Ed. by A. D. Saunders and M. J. Norry (London, 1989), pp. 313–345.

  58. R. J. Tingey, “The regional geology of Archaean and Proterozoic rocks in Antarctica,” in The Geology of Antarctica, Ed. by R. J. Tingey (Clarendon, Oxford, 1991), pp. 1–58.

    Google Scholar 

  59. N. M. Tucker, J. P. Payne, C. Clark, M. Hand, R. J. M. Taylor, A. R. C. Kylander-Clark, and L. Martin, “Proterozoic reworking of Archaean (Yilgarn) basement in the Bunger Hills, East Antarctica,” Precambrian Res. 298, 16–38 (2017).

    Google Scholar 

  60. K. Vijaya Kumar, W. G. Ernst, C. Leelanandam, J.  L. Wooden, and N. J. Grove, “First Paleoproterozoic ophiolite from Gondwana: Geochronologic–geochemical documentation of ancient oceanic crust from Kandra, SE India,” Tectonophysics 487, 22–32 (2010).

    Google Scholar 

  61. K. Vijaya Kumar, C. Leelanandam, and W. G. Ernst, “Formation and fragmentation of the Paleoproterozoic supercontinent Columbia: Evidence from the Eastern Ghats Granulite Belt, southeast India,” Int. Geol. Rev. 53, 1297–1311 (2011).

    Google Scholar 

  62. I. S. Williams, “U-Th-Pb geochronology by ion-microprobe,” Rev. Econ. Geol. 7, 1–35 (1998).

    Google Scholar 

  63. M. Wilson, Igneous Petrogenesis (Chapman & Hall, London, 1989).

    Google Scholar 

  64. J. A. Winchester and P. A. Floyd, “Geochemical discrimination of different magma series and their differentiation products using immobile elements,” Chem. Geol. 20, 325–343 (1977).

    Google Scholar 

  65. D. A. Wood, “The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province,” Earth Planet. Sci. Lett. 50, 11–30 (1980).

    Google Scholar 

  66. L. Xia and X. Li, “Basalt geochemistry as a diagnostic indicator of tectonic setting,” Gondwana Res. 65, 43–67 (2019).

    Google Scholar 

  67. S.-H. Zhang, Y. Zhao, X.-C. Liu, Y.-S. Liu, K.-J. Hou, C.-F. Li, and H. Ye, “U–Pb geochronology and geochemistry of the bedrock and moraine sediments from the Windmill Islands: Implications for Proterozoic evolution of East Antarctica,” Precambrian Res. 206–207, 52–71 (2012).

    Google Scholar 

  68. S. Zhang, Z.-X. Li, D. A. D. Evans, H. Wu, H. Li, and J. Dong, “Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China,” Earth Planet. Sci. Lett. 353–354, 145–155 (2012).

    Google Scholar 

  69. G. Zhao, M. Sun, S. A. Wilde, and S. Li, “A Paleo-Mesoproterozoic supercontinent: Assembly, growth and breakup,” Earth-Sci. Rev. 67, 91–123 (2004).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are sincerely grateful to our reviewer A.A. Shchipanskii, Doctor of Science (Geology and Mineralogy), and the anonymous reviewer for comments that improved the paper, as well as to the editorial board for the high level of preparation of the original version.

Funding

The study was performed under the state tasks to All-Russia Scientific Research Institute for Geology and Mineral Resources of the Ocean; Karpinsky Russian Geological Research Institute; Polar Marine Geosurvey Expedition; Institute of Geology, Karelian Research Center, Russian Academy of Sciences; and Geological Institute, Kola Science Center, Russian Academy of Sciences; the study was also financially supported by the Russian Foundation for Basic Research (project no. 15-05-02761).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Mikhalsky.

Additional information

Reviewer: A.A. Shchipansky

Translated by E. Murashova

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhalsky, E.V., Alexeev, N.L., Kamenev, I.A. et al. Chemical Composition, U–Th–Pb Age, and Geodynamic Setting of Metavolcanic Filla Series (Rauer Islands, East Antarctica). Geotecton. 54, 285–307 (2020). https://doi.org/10.1134/S0016852120030073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016852120030073

Keywords:

Navigation