Skip to main content
Log in

High-Speed Flame Propagation in a Channel and Transition to Detonation

  • HEAT AND MASS TRANSFER AND PHYSICAL GASDYNAMICS
  • Published:
High Temperature Aims and scope

Abstract

The physical mechanisms controlling the development of a flame prior to transition to detonation in a channel filled with a combustible gaseous mixture are systemized and analyzed. The features of the development of the accelerated flame in a channel are demonstrated with the results of numerical simulation for smooth and obstructed channels. This analysis makes it possible to formulate the criteria for a detonation onset induced by the development of an accelerated flame. Estimations on the basis of the proposed criteria predict with reasonable accuracy the limits of detonation initiation in hydrogen-based combustible mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Mitigation of hydrogen hazards in severe accidents in nuclear power plants, Tech. Rep. IAEA-TECDOC-1661, Vienna: Int. At. Energy Agency, 2011.

  2. Wang, B., Rao, Z., Xie, Q., et al., J. Loss Prev. Process Ind., 2017, vol. 49, p. 280.

    Article  Google Scholar 

  3. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika (Theoretical Physics), vol. 6: Gidrodinamika (Hydrodynamics), Moscow: Nauka, 1988.

  4. Gostintsev, Yu.A., Istratov, A.G., and Shulenin, Yu.V., Combust., Explos. Shock Waves (Engl. Transl.), 1988, vol. 24, no. 5, p. 563.

  5. Wang, Z., Qi, Y., He, X., et al., Fuel, 2015, vol. 144, p. 222.

    Article  Google Scholar 

  6. Xiao, H., Sun, J., and Chen, P., J. Hazard. Mater., 2014, vol. 268, p. 132.

    Article  Google Scholar 

  7. Ng, H.D. and Lee, J.H., J. Loss Prev. Process Ind., 2008, vol. 21, no. 2, p. 136.

    Article  Google Scholar 

  8. Koksharov, A., Bykov, V., Kagan, L., and Sivashinsky, G., Combust. Flame, 2018, vol. 195, p. 163.

    Article  Google Scholar 

  9. Zel’dovich, Ya.B. and Rozlovskii, A.I., Dokl. Akad. Nauk SSSR, 1947, vol. 57, no. 4, p. 365.

    Google Scholar 

  10. Kiverin, A.D., Yakovenko, I.S., and Fortov, V.E., Dokl. Phys., 2019, vol. 64, no. 12, p. 449.

    Article  ADS  Google Scholar 

  11. Salamandra, G., Bazhenova, T., and Naboko, I., Proc. Combust. Inst., 1958, vol. 7, no. 1, p. 851.

    Article  Google Scholar 

  12. Urtiew, P.A. and Oppenheim, A.K., Proc. R. Soc. A, 1966, vol. 295, no. 1440, p. 13.

    ADS  Google Scholar 

  13. Kuznetsov, M., Alekseev, V., Matsukov, I., and Dorofeev, S., Shock Waves, 2005, vol. 14, no. 3, p. 205.

    Article  ADS  Google Scholar 

  14. Ivanov, M.F., Kiverin, A.D., Liberman, M.A., and Fortov, V.E., Dokl. Phys., 2010, vol. 55, no. 10, p. 480.

    Article  ADS  Google Scholar 

  15. Liberman, M., Ivanov, M., Kiverin, A., et al., Acta Astronaut., 2010, vol. 67, p. 688.

    Article  ADS  Google Scholar 

  16. Kiverin, A., Yakovenko, I., and Ivanov, M., Int. J. Hydrogen Energy, 2016, vol. 41, no. 47, p. 22465.

    Article  Google Scholar 

  17. Kiverin, A.D. and Yakovenko, I.S., Math. Modell. Nat. Phenom., 2018, vol. 13, no. 6, p. 54.

    Article  Google Scholar 

  18. Kiverin, A.D. and Yakovenko, I.S., Combust. Sci. Technol., 2020, vol. 192, no. 1, p. 112.

    Article  Google Scholar 

  19. Alekseev, V., Kuznetsov, M., Yankin, Y., and Dorofeev, S., J. Loss Prev. Process Ind., 2001, vol. 14, no. 6, p. 591.

    Article  Google Scholar 

  20. Peraldi, O., Knystautas, R., and Lee, J., Proc. Combust. Inst., 1988, vol. 21, no. 1, p. 1629.

    Article  Google Scholar 

  21. Lee, J., Knystautas, R., and Chan, C., Symp. (Int.) Combust., [Proc.], 1985, vol. 20, no. 1, p. 1663.

  22. Vasil’ev, A.A., Combust., Explos. Shock Waves (Engl. Transl.), 2012, vol. 48, no. 3, p. 269.

  23. Warnatz, J., Maas, U., and Dibble, R., Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, Berlin: Springer, 2006.

    MATH  Google Scholar 

  24. Kiverin, A. and Yakovenko, I., Combust. Flame, 2019, vol. 204, p. 227.

    Article  Google Scholar 

  25. Bykov, V., Kiverin, A., Koksharov, A., and Yakovenko, I., Comput. Fluids, 2019, vol. 194, 104310.

    Article  MathSciNet  Google Scholar 

  26. Manzhalei, V.I., Combust., Explos. Shock Waves (Engl. Transl.), 1992, vol. 28, no. 3, p. 296.

  27. Wu, Y., Zheng, Q., and Weng, C., Energy, 2017, vol. 143, p. 554.

    Article  Google Scholar 

  28. Li, J., Lai, W., Chung, K., and Lu, F., Combust. Flame, 2008, vol. 154, no. 3, p. 331.

    Article  Google Scholar 

  29. Khomik, S., Veyssiere, B., Medvedev, S., et al., Shock Waves, 2012, vol. 22, p. 199.

    Article  ADS  Google Scholar 

  30. Johnson, R., Mcintosh, A., and Yang, X.S., Combust. Theory Modell., 2003, vol. 7, p. 29.

    Article  ADS  Google Scholar 

  31. Smirnov, N.N. and Tyurnikov, M.V., Combust. Flame, 1995, vol. 100, no. 4, p. 661.

    Article  Google Scholar 

  32. Silvestrini, M., Genova, B., Parisi, G., and Leon Trujillo, F., J. Loss Prev. Process Ind., 2008, vol. 21, no. 5, p. 555.

    Article  Google Scholar 

  33. Zeldovich, Y., Combust. Flame, 1980, vol. 39, no. 3, p. 219.

    Article  Google Scholar 

  34. Pyatnitskii, L.R., Combust., Explos. Shock Waves (Engl. Transl.), 2019, vol. 55, no. 6, p. 633.

  35. Krivosheyev, P.N., Penyazkov, O.G., and Sakalou, A., in 27th Int. Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Beijing, 2019, rep. no. 071.

  36. Adams, G. and Pack, D., Symp. (Int.)Combust.,[Proc.], 1958, vol. 7, p. 812.

    Google Scholar 

  37. Taki, S. and Fujiwara, T., Symp. (Int.) Combust., [Proc.], 1971, vol. 13, no. 1, p. 1119.

  38. Wang, C., Wu, S., Zhao, Y., and Addai, E.K., J. Loss Prev. Process Ind., 2017, vol. 49, p. 612.

    Article  Google Scholar 

  39. Nicoud, F. and Poinsot, T., Combust. Flame, 2005, vol. 142, no. 1, p. 153.

    Article  Google Scholar 

  40. Ivanov, M.F., Kiverin, A.D., and Galburt, V.A., Combust. Sci. Technol., 2010, vol. 182, nos. 11–12, p. 1683.

    Article  Google Scholar 

  41. Ivanov, M.F. and Kiverin, A.D., High Temp., 2015, vol. 53, no. 5, p. 668.

    Article  Google Scholar 

  42. Golub, V.V., Baklanov, D.I., Golovastov, S.V., et al., High Temp., 2010, vol. 48, no. 6, p. 860.

    Article  Google Scholar 

  43. Kellenberger, M. and Ciccarelli, G., Proc. Combust. Inst., 2015, vol. 35, no. 2, p. 2109.

    Article  Google Scholar 

  44. Medvedev, S.P., Polenov, A.N., Khomik, S.V., and Gel’fand, B.E., Russ. J. Phys. Chem. B, 2010, vol. 4, no. 1, p. 70.

    Article  Google Scholar 

  45. Thomas, G., Ward, S., Williams, R., and Bambrey, R., Shock Waves, 2002, vol. 12, no. 2, p. 111.

    Article  ADS  Google Scholar 

  46. Hjertager, B.H., J. Hazard. Mater., 1993, vol. 34, no. 2, p. 173.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University and using supercomputers at Joint Supercomputer Center of the Russian Academy of Sciences (JSCC RAS). The authors are grateful to M.A. Mal’tsev and I.V. Morozov for the preparation of the style file.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Kiverin.

Additional information

Translated by T. Krasnoshchekova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiverin, A.D., Yakovenko, I.S. High-Speed Flame Propagation in a Channel and Transition to Detonation. High Temp 58, 647–654 (2020). https://doi.org/10.1134/S0018151X20040070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0018151X20040070

Navigation