Skip to main content
Log in

Oxygen Chemisorption on the Surface of an In2O3 (011) Nanocrystal

  • Published:
Inorganic Materials Aims and scope

Abstract—

Density-functional calculations are used to study the structural and electronic properties of stoichiometric and imperfect In2O3 (011) surfaces. We calculate energies of formation of neutral oxygen vacancies on the surface of an indium oxide nanocrystal and analyze the adsorption of an oxygen atom in its ground (triplet) state on a model imperfect surface having O4 vacancies in different charge states. The results indicate that adsorption on a \(V_{{\text{O}}}^{{2 + }}\) vacancy is the most energetically favorable and that the oxygen atom involved switches from a triplet state to a singlet one. We consider oxygen molecule adsorption from different initial geometric configurations on neutral O1–6 vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Chen, P., Yin, X., Que, M., Liu, X., and Que, W., Low temperature solution processed indium oxide thin films with reliable photoelectrochemical stability for efficient and stable planar perovskite solar cells, J. Mater. Chem. A, 2017, vol. 5, pp. 9641–9648.

    CAS  Google Scholar 

  2. Baratto, C., Ferroni, M., Faglia, G., and Sberveglieri, G., Iron-doped indium oxide by modified RGTO deposition for ozone sensing, Sens. Actuators, B, 2006, vol. 118, nos. 1–2, pp. 221–225.

    CAS  Google Scholar 

  3. Yamaura, H., Jinkawa, T., Tamaki, J., Moriya, K., Miura, N., and Yamazoe, N., Indium oxide based gas sensor for selective detection of CO, Sens. Actuators, B, 1996, vol. 36, nos. 1–3, pp. 325–332.

    CAS  Google Scholar 

  4. Golan, G., Axelevitch, A., Gorenstein, B., and Peled, A., Novel type of indium oxide thin films sputtering for opto-electronic applications, Appl. Surf. Sci., 2007, vol. 253, no. 15, pp. 6608–6611.

    CAS  Google Scholar 

  5. Fang, Z., Assaaoudi, H., Guthrie, R.I.L., Kozinski, J.A., and Butler, I.S., Continuous synthesis of tin and indium oxide nanoparticles in sub- and supercritical water, J. Am. Ceram. Soc., 2007, vol. 90, no. 8, pp. 2367–2371.

    CAS  Google Scholar 

  6. Marezio, M., Refinement of the crystal structure of In2O3 at two wavelengths, Acta Crystallogr., 1966, vol. 20, no. 6, pp. 723–728.

    CAS  Google Scholar 

  7. Hao, Y., Meng, G., Ye, C., and Zhang, L., Controlled synthesis of In2O3 octahedrons and nanowires, Cryst. Growth Des., 2005, vol. 5, no. 4, pp. 1617–1621.

    CAS  Google Scholar 

  8. Shi, M., Xu, F., Yu, K., Zhu, Z., and Fang, J., Controllable synthesis of In2O3 nanocubes, truncated nanocubes, and symmetric multipods, J. Phys. Chem. C, 2007, vol. 111, no. 44, pp. 16267–16271.

    CAS  Google Scholar 

  9. Agoston, P. and Albe, K., Thermodynamic stability, stoichiometry, and electronic structure of bcc-In2O3 surfaces, Phys. Rev. B:, Condens. Matter Mater. Phys., 2011, vol. 84, paper 045311.

  10. Walsh, A. and Catlow, C.R.A., Structure, stability and work functions of the low index surfaces of pure indium oxide and Sn-doped indium oxide (ITO) from density functional theory, J. Mater. Chem., 2010, vol. 20, no. 46, pp. 10438–10444.

    CAS  Google Scholar 

  11. Zhou, C., Li, J., Chen, S., Wu, J., Heier, K.R., and Cheng, H., First-principles study on water and oxygen adsorption on surfaces of indium oxide and indium tin oxide nanoparticles, J. Phys. Chem. C, 2008, vol. 112, no. 36, pp. 14015–14020.

    CAS  Google Scholar 

  12. Inerbaev, T., Sahara, R., Mizuseki, H., Kawazoe, Y., and Nakamura, T., Theoretical modeling of oxygen and water adsorption on indium oxide (111) surface, ACS Symp. Ser., 2015, vol. 1196, pp. 137–149.

    CAS  Google Scholar 

  13. Tasker, P.W., The stability of ionic crystal surfaces, J. Phys. C: Solid State Phys., 1979, vol. 12, no. 22, pp. 4977–4984.

    CAS  Google Scholar 

  14. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Dal Corso, A., Fabris, S., Fratesi, G., de Gironcoli, S., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., and Wentzcovitch, R.M., A modular and open-source software project for quantum simulations of materials, J. Phys.: Condens. Matter, 2009, vol. 21, paper 395502. http://arxiv.org/abs/0906.2569

  15. Kresse, G. and Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B: Condens. Matter Mater. Phys., 1999, vol. 59, pp. 1758–1775.

    CAS  Google Scholar 

  16. Perdew, P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, pp. 3865–3868.

    CAS  PubMed  Google Scholar 

  17. Monkhorst, H.J. and Pack, J.D., Special points for Brillouin-zone integrations, Phys. Rev. B: Solid State, 1976, vol. 13, pp. 5188–5192.

    Google Scholar 

  18. Smith, J.F. and Schneider, V.L., Anisotropic thermal expansion of indium, J. Less-Common Met., 1964, vol. 7, no. 1, pp. 17–22.

    CAS  Google Scholar 

  19. Cordfunke, E.H.P., Konings, R.J.M., and Ouweltjes, W., The standard enthalpy of formation of In2O3, J. Chem. Thermodyn., 1991, vol. 23, no. 5, pp. 451–454.

    CAS  Google Scholar 

  20. Huber, K.P. and Herzberg, G., Molecular Spectra and Molecular Structure, New York: Van Nostrand, 1979, vol. 4.

    Google Scholar 

  21. Löwdin, P.O., On the non-orthogonality problem, Adv. Quantum Chem., 1970, vol. 5, pp. 185–199.

    Google Scholar 

  22. Che, M. and Tench, A.J., Characterization and reactivity of molecular-oxygen species on oxide surfaces, Adv. Catal., 1983, vol. 32, pp. 1–148.

    CAS  Google Scholar 

  23. Bourlange, A., Payne, D.J., Egdell, R.G., Foord, J.S., Edwards, P.P., Jones, M.O., Schertel, A., Dobson, P.J., and Hutchison, J.L., Growth of In2O3(100) on Y-stabilized ZrO2(100) by O-plasma assisted molecular beam epitaxy, Appl. Phys. Lett., 2008, vol. 92, no. 9, pp. 092117–092120.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to our colleagues at the Joint Supercomputer Center, Russian Academy of Sciences, for providing us with necessary computational resources.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target no. 0082-2018-0003 for the Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, theme no. 45.22: Fundamental Principles behind the Development of a New Generation of Nanostructured Systems with Unique Performance Parameters, state registration no. AAAA-A18-118012390045-2) and the Russian Foundation for Basic Research (grant nos. 19-37-90016 and 19-07-00141a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Kurmangaleev.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurmangaleev, K.S., Mikhailova, T.Y. & Trakhtenberg, L.I. Oxygen Chemisorption on the Surface of an In2O3 (011) Nanocrystal. Inorg Mater 56, 1138–1146 (2020). https://doi.org/10.1134/S0020168520110060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168520110060

Keywords:

Navigation