Skip to main content
Log in

Optimized Voltammetric Experiment for the Determination of Phloroglucinol at Surfactant Modified Carbon Nanotube Paste Electrode

  • PHYSICAL INSTRUMENTS FOR ECOLOGY, MEDICINE, AND BIOLOGY
  • Published:
Instruments and Experimental Techniques Aims and scope Submit manuscript

Abstract

Present work describes the electrochemical sensing and determination of phenolic compound (Phloroglucinol) using non-ionic surfactant Octyl phenol ethoxylate modified carbon nanotube paste electrode (OPEMCNTPE) in PBS (0.1 mol, pH 6.0) by Voltammetric method. The developed electrode was characterized by field emission scanning electron microscope (FE-SEM) and cyclic voltammetric (CV) studies. The OPEMCNTPE shows an exceptional catalytic impact towards the electro-oxidation of Phloroglucinol (PL) in contrast to the bare carbon nanotube paste electrode (BCNTPE). The rise in the concentration of PL is directly proportional to PL anodic peak current in the linear working range 10–90 µmol with a small detection limit (LOD) 0.71 µmol. This method was utilized for the estimation of PL in the water and blood serum samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCE

  1. Singh, I.P., Sidana, J., Bansal, P., and Foley, W.J., Expert Opin. Ther. Pat., 2009, vol. 19, no. 6, p. 847. https://doi.org/10.1517/13543770902916614

    Article  Google Scholar 

  2. Singh, I.P. and Bharate, S.B., Nat. Prod. Rep., 2006, vol. 23, no. 4, p. 558. https://doi.org/10.1039/b600518g

    Article  Google Scholar 

  3. Khawla, S.A. and Ekhlas, Q.J., IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 571, p. 012097. https://doi.org/10.1088/1757-899X/571/1/012097

  4. Archana, I. and Vijayalakshmi, K., Int. J. Pharm. Sci. Res., 2018, vol. 9, no. 7, p. 2947. https://doi.org/10.13040/IJPSR.0975-8232.9(7).2947-51

    Article  Google Scholar 

  5. Ning, L., Shabana, I.K., Shi, Q., and Xing, C.L., Molecules, 2018, vol. 23, no. 12, p. 3232. https://doi.org/10.3390/molecules23123232

    Article  Google Scholar 

  6. Chatterjee, A.K. and Gibbin, L.N., Anal. Biochem., 1969, vol. 30, no. 3, p. 436. https://doi.org/10.1016/0003-2697(69)90138-9

    Article  Google Scholar 

  7. Misra, A.K., Agarwal, S.K., and Rajput, R.P.S., Indian J. Chem. Technol., 1998, vol. 5, p. 383.

    Google Scholar 

  8. Hua, C., Cheng, G.X., and Chun, Z.L., Luminescence, 2003, vol. 18, no. 6, p. 318. https://doi.org/10.1002/bio.740

    Article  Google Scholar 

  9. Sharma, O.P., Bhat, T.K., and Singh, B., J. Chromatogr. A, 1998, vol. 822, no. 1, p. 167.

    Article  Google Scholar 

  10. Hong-Wei, W., Mei-Lan, C., Dan, S., and Yan, Z., Chin. J. Anal. Chem., 2012, vol. 40, no. 11, p. 1747. https://doi.org/10.1016/S1872-2040(11)60588-4

    Article  Google Scholar 

  11. Li, X.Q., Wang, R.T., Wang, Q.H., Tang, X.L., Lu, C.T., Gong, H.G., and Wen, A.D., Eur. Rev. Med. Pharmacol. Sci., 2017, vol. 21, no. 8, p. 1990.

    Google Scholar 

  12. Junhua, L., Daizhi, K., Yonglan, F., Mengqin, L., Fuxing, Z., and Peihong, D., J. Braz. Chem. Soc., 2013, vol. 24, no. 4, p. 621. https://doi.org/10.5935/0103-5053.20130077

    Article  Google Scholar 

  13. Barrak, H., Saied, T., Chevallier, P., Laroche, G., Mnif, A., and Hamzaoui, A.H., Arabian J. Chem., 2019, vol. 12, no. 8, p. 4340. https://doi.org/10.1016/j.arabjc.2016.04.019

    Article  Google Scholar 

  14. Xiao-gang, W. and Ya-juan, F., J. Appl. Electrochem., 2009, vol. 39, p. 1451. https://doi.org/10.1007/s10800-009-9824-3

    Article  Google Scholar 

  15. Tigari, G. and Manjunatha, J.G., J. Anal. Test., 2019, vol. 3, p. 331. https://doi.org/10.1007/s41664-019-00116-w

    Article  Google Scholar 

  16. Labib, M., Sargent, E.H., and Kelley, S.O., Chem. Rev., 2016, vol. 116, no.16, p. 9001. https://doi.org/10.1021/acs.chemrev.6b00220

    Article  Google Scholar 

  17. Raril, C. and Manjunatha, J.G., Mod. Chem. Appl., 2018, vol. 6, p. 1. https://doi.org/10.4172/2329-6798.1000263

    Article  Google Scholar 

  18. Manjunatha, J.G., Int. J. ChemTech Res., 2016, vol. 9, p. 136.

    Google Scholar 

  19. Beitollahi, H., Fahimeh, M., Somayeh, T., and Shohreh, J., Electroanalysis, 2018, vol. 31, no. 7, p. 1195. https://doi.org/10.1002/elan.201800370

    Article  Google Scholar 

  20. Manjunatha, J.G., J. Electrochem. Sci. Eng., 2017, vol. 7 no. 1, p. 39. https://doi.org/10.5599/jese.368

    Article  Google Scholar 

  21. Atta, N.F., Darwish, S.A., Khalil, S.E., and Galal, A., Talanta, 2007, vol. 72, no. 4, p.1438. https://doi.org/10.1016/j.talanta.2007.01.053

    Article  Google Scholar 

  22. Vittal, R., Gomathi, H., and Kim, K.J., Adv. Colloid Interface Sci., 2006, vol. 119, no. 1, p. 55. https://doi.org/10.1016/j.cis.2005.09.004

    Article  Google Scholar 

  23. Gouveia-Caridade, C. and Brett, C.M.A., J. Electroanal. Chem., 2006, vol. 592, no. 1, p. 113. https://doi.org/10.1016/j.jelechem.2006.05.005

    Article  Google Scholar 

  24. Ratnanjali, S., Soami, P.S., and Rajeev, J., ECS Trans., 2013, vol. 50, no. 54, p. 23. https://doi.org/10.1149/05054.0023ecst

    Article  Google Scholar 

  25. Manjunatha, J.G., J. Food Drug Anal., 2018, vol. 26, no. 1, p. 292. https://doi.org/10.1016/j.jfda.2017.05.002

    Article  Google Scholar 

  26. Raril, C. and Manjunatha, J.G., J. Mater. Environ. Sci., 2019, vol. 10, no. 6, p. 510.

    Google Scholar 

  27. Sangili, A., Veerakumar, P., Chen, S.M., Rajkumar, C., and Lin, K.C., Microchim. Acta, 2019, vol. 186, p. 299. https://doi.org/10.1007/s00604-019-3396-7

    Article  Google Scholar 

  28. Zhang, D., Wang, C., Shen, L., Shin, H.C., Lee, K.B., and Ji, B., RSC Adv., 2018, vol. 8, no. 4, p. 1963. https://doi.org/10.1039/C7RA10875C

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support from VGST, Bangalore under Research project. No. KSTePS/VGST-KFIST (L1)2016-2017/GRD-559/2017-18/126/333, 21/11/2017.

Funding

This research did not receive any specific grant from funding agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Manjunatha.

Ethics declarations

The authors declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tigari, G., Manjunatha, J.G. Optimized Voltammetric Experiment for the Determination of Phloroglucinol at Surfactant Modified Carbon Nanotube Paste Electrode. Instrum Exp Tech 63, 750–757 (2020). https://doi.org/10.1134/S0020441220050139

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020441220050139

Navigation