Skip to main content
Log in

Vortex reconnection in a swirling flow

  • Plasma, Hydro- and Gas Dynamics
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

Processes of vortex reconnection on a helical vortex, which is formed in a swirling flow in a conical diffuser, have been studied experimentally. It has been shown that reconnection can result in the formation of both an isolated vortex ring and a vortex ring linked with the main helical vortex. A number of features of vortex reconnection, including the effects of asymmetry, generation of Kelvin waves, and formation of various bridges, have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Alekseenko, P. A. Kuibin, and V. L. Okulov, Theory of Concentrated Vortices: An Introduction (Springer, Berlin, Heidelberg, New York, 2007).

    MATH  Google Scholar 

  2. S. V. Alekseenko, P. A. Kuibin, V. L. Okulov, and S. I. Shtork, J. Fluid Mech. 382, 195 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  3. S. Kida and M. Takaoka, Ann. Rev. Fluid Mech. 26, 169 (1994).

    Article  ADS  MathSciNet  Google Scholar 

  4. R. J. Donnelly, Quantized Vortices in Helium II (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  5. S. K. Nemirovskii, Phys. Rep. 524, 85 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. S. Paoletti, M. E. Fisher, and D. P. Lathrop, Physica D 239, 1367 (2010).

    Article  ADS  Google Scholar 

  7. E. Fonda, D. P. Meichle, N. T. Ouellette, S. Hormoz, and D. P. Lathrop, Proc. Natl. Acad. Sci. 111, 4707 (2014).

    Article  ADS  Google Scholar 

  8. S. Crow, AIAA J. 8, 2172 (1970).

    Article  ADS  Google Scholar 

  9. T. Misaka, F. Holzapfel, I. Hennemann, T. Gerz, M. Manhart, and F. Schwertfirm, Phys. Fluids 24, 025104 (2012).

    Article  ADS  Google Scholar 

  10. M. V. Melander and F. Hussain, Phys. Fluids A 1, 633 (1989).

    Article  ADS  Google Scholar 

  11. P. G. Saffman, J. Fluid Mech. 212, 395 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  12. M. J. Shelley, D. I. Meiron, and S. A. Orszag, J. Fluid Mech. 246, 613 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  13. R. M. Kerr, Phys. Fluids 25, 065101 (2013).

    Article  ADS  Google Scholar 

  14. F. Hussain and K. Duraisamy, Phys. Fluids 23, 021701 (2011).

    Article  ADS  Google Scholar 

  15. W. M. van Rees, F. Hussain, and P. Koumoutsakos, Phys. Fluids 24, 075105 (2012).

    Article  ADS  Google Scholar 

  16. Q. Ni, F. Hussain, J. Wang, and S. Chen, Phys. Fluids 24, 105102 (2012).

    Article  ADS  Google Scholar 

  17. M. V. Melander and N. J. Zabusky, Fluid Dyn. Res. 3, 247 (1988).

    Article  ADS  Google Scholar 

  18. W. T. Ashurst and D. I. Meiron, Phys. Rev. Lett. 58, 1632 (1987).

    Article  ADS  Google Scholar 

  19. H. Aref and I. Zawadzki, Nature 354 (50–53), 50 (1991).

    Article  ADS  Google Scholar 

  20. P. Chatelain, D. Kivotides, and A. Leonard, Phys. Rev. Lett. 90, 054501 (2003).

    Article  ADS  Google Scholar 

  21. S. Kida and M. Takaoka, Phys. Fluids 30, 2911 (1987).

    Article  ADS  Google Scholar 

  22. S. Kida and M. Takaoka, Fluid Dyn. Res. 3, 257 (1988).

    Article  ADS  Google Scholar 

  23. E. D. Siggia, Phys. Fluids 28, 794 (1985).

    Article  ADS  Google Scholar 

  24. T. Fohl and J. S. Turner, Phys. Fluids 18, 433 (1975).

    Article  ADS  Google Scholar 

  25. Y. Oshima and S. Asaka, Nature Sci. Rep., Ochanomizu Univ. 26, 31 (1975).

    Google Scholar 

  26. Y. Oshima and N. Izutsu, Phys. Fluids 31, 2401 (1988).

    Article  ADS  Google Scholar 

  27. F. R. Hama, Proc. Heat Transf. Fluid Mech. Inst. (1960).

    Google Scholar 

  28. T. Leweke and C. H. K. Williamson, Phys. Fluids 23, 024101 (2011).

    Article  ADS  Google Scholar 

  29. D. P. Delisi and W. F. Pierce, in Proceedings of the 3rd AIAA Atmospheric Space Environments Conference, Honolulu, Hawaii, June 2011, AIAA 2011-3033.

    Google Scholar 

  30. D. Kleckner and W. T. M. Irvine, Nature Phys. 9, 253 (2013).

    Article  ADS  Google Scholar 

  31. D. Kleckner, M. W. Scheeler, and W. T. M. Irvine, Phys. Fluids 26, 091105 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Skripkin.

Additional information

Original Russian Text © S.V. Alekseenko, P.A. Kuibin, S.I. Shtork, S.G. Skripkin, M.A. Tsoy, 2016, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2016, Vol. 103, No. 7, pp. 516–521.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseenko, S.V., Kuibin, P.A., Shtork, S.I. et al. Vortex reconnection in a swirling flow. Jetp Lett. 103, 455–459 (2016). https://doi.org/10.1134/S002136401607002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136401607002X

Navigation