Skip to main content
Log in

The Role of Neuro-Cardiac Junctions in Sympathetic Regulation of the Heart

  • Reviews
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

One of the important mechanisms of cardiac regulation is realized via sympathetic innervation of cardiac myocytes. Axons of the sympathetic neurons branch out and form varicosities along their length, filled with synaptic vesicles that contain a major neurotransmitter (norepinephrine) and co-neurotransmitters. The varicosities may closely contact with cardiomyocytes and form neuro-cardiac junctions (NCJs), which have a synapse-like organization, namely pre- and postsynaptic regions separated by a narrow gap. These synaptic structures demonstrate high plasticity, while neurotransmitter release from the presynaptic varicosity is tightly regulated, including due to autoreceptors. Neurotransmission via NCJs mediates fast chronotropic and inotropic effects and also controls tropic processes, which determine the size of cardiomyocytes and the architecture of the heart wall. Different subtypes of postsynaptic adrenoceptors are involved in these short- and long-term effects of neuro-cardiac interactions. Changes in cardiac adrenergic neurotransmission often accompany many widespread pathologies, such as heart failure, arrhythmias and hypertension, contributing to their progression. In this review, we systematized and summarized experimental evidence supporting the hypothesis about cardiac quasi-synaptic transmission that may be of decisive importance for brain-heart communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Fedele L, Brand T (2020) The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 7:54. https://doi.org/10.3390/jcdd7040054

    Article  CAS  PubMed Central  Google Scholar 

  2. Bardsley EN, Paterson DJ (2020) Neurocardiac regulation: from cardiac mechanisms to novel therapeutic approaches. J Physiol 598:2957-2976. https://doi.org/10.1113/JP276962

    Article  CAS  PubMed  Google Scholar 

  3. Francis Stuart SD, Wang L, Woodard WR, Ng GA, Habecker BA, Ripplinger CM (2018) Age-related changes in cardiac electrophysiology and calcium handling in response to sympathetic nerve stimulation. J Physiol 596:3977-3991. https://doi.org/10.1113/JP276396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McLean MR, Goldberg PB, Roberts J (1983) An ultrastructural study of the effects of age on sympathetic innervation and atrial tissue in the rat. J Mol Cell Cardiol 15:75-92. https://doi.org/10.1016/0022-2828(83)90284-5

    Article  CAS  PubMed  Google Scholar 

  5. Lamotte G, Holmes C, Wu T, Goldstein DS (2019) Long-term trends in myocardial sympathetic innervation and function in synucleinopathies. Parkinsonism Relat Disord 67:27-33. https://doi.org/10.1016/j.parkreldis.2019.09.014

    Article  PubMed  PubMed Central  Google Scholar 

  6. Safandeev VV, Kolacheva AA, Ugrumov MV (2019) Estimation of Metabolism of Catecholamines in Peripheral Organs As an Indicator of Their Desympathization under the Influence of Neurotoxins. Dokl Biochem Biophys 486:171-174. https://doi.org/10.1134/S1607672919030037

    Article  CAS  PubMed  Google Scholar 

  7. Kuzmin VS, Potekhina VM, Odnoshivkina YG, Chelombitko MA, Fedorov AV, Averina OA, et al. (2020) Proarrhythmic atrial ectopy associated with heart sympathetic innervation dysfunctions is specific for murine B6CBAF1 hybrid strain. Life Sci 266:118887. https://doi.org/10.1016/j.lfs.2020.118887

    Article  CAS  PubMed  Google Scholar 

  8. Goldstein DS, Eldadah B, Sharabi Y, Axelrod FB (2008) Cardiac sympathetic hypo-innervation in familial dysautonomia. Clin Auton Res 18:115-119. https://doi.org/10.1007/s10286-008-0464-1

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kimura K, Ieda M, Fukuda K (2012) Development, maturation, and transdifferentiation of cardiac sympathetic nerves. Circ Res 110:325-336. https://doi.org/10.1161/CIRCRESAHA.111.257253

    Article  CAS  PubMed  Google Scholar 

  10. Bennett MR, Cheung A, Brain KL (1998) Sympathetic neuromuscular transmission at a varicosity in a syncytium. Microsc Res Tech 42:433-450. https://doi.org/10.1002/(SICI)1097-0029(19980915)42:6<433::AID-JEMT6>3.0.CO;2-N

    Article  CAS  PubMed  Google Scholar 

  11. Goyal RK, Chaudhury A (2013) Structure activity relationship of synaptic and junctional neurotransmission. Auton Neurosci 176:11-31. https://doi.org/10.1016/j.autneu.2013.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Freeman K, Tao W, Sun H, Soonpaa MH, Rubart M (2014) In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging. J Neurosci Methods 221:48-61. https://doi.org/10.1016/j.jneumeth.2013.09.005

    Article  PubMed  Google Scholar 

  13. Zaglia T, Mongillo M (2017) Cardiac sympathetic innervation, from a different point of (re)view. J Physiol 595:3919-3930. https://doi.org/10.1113/JP273120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shcherbakova OG, Hurt CM, Xiang Y, Dell’Acqua ML, Zhang Q, Tsien RW, Kobika BK (2007) Organization of beta-adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes. J Cell Biol 176:521-533. https://doi.org/10.1083/jcb.200604167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Prando V, Da Broi F, Franzoso M, Plazzo AP, Pianca N, Francolini M, Basso C, Kay MW, Zaglia T, Mongillo M (2018) Dynamics of neuroeffector coupling at cardiac sympathetic synapses. J Physiol 596:2055-2075. https://doi.org/10.1113/JP275693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brain KL, Cottee LJ, Bennett MR (1997) Varicosities of single sympathetic nerve terminals possess syntaxin zones and different synaptotagmin N-terminus labelling following stimulation. J Neurocytol 26:491-500. https://doi.org/10.1023/a:1018533524643

    Article  CAS  PubMed  Google Scholar 

  17. Sung U, Apparsundaram S, Galli A, Kahlig KM, Savchenko V, Schroeter S, Quick MW, Blakely RD (2003) A regulated interaction of syntaxin 1A with the antidepressant-sensitive norepinephrine transporter establishes catecholamine clearance capacity. J Neurosci 23:1697-709. https://doi.org/10.1523/JNEUROSCI.23-05-01697.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li D, Paterson DJ (2019) Pre-synaptic sympathetic calcium channels, cyclic nucleotide-coupled phosphodiesterases and cardiac excitability. Semin Cell Dev Biol 94:20-27. https://doi.org/10.1016/j.semcdb.2019.01.010

    Article  CAS  PubMed  Google Scholar 

  19. Abramochkin DV, Nurullin LF, Borodinova AA, Tarasova NV, Sukhova GS, Nikolsky EE, Rosenshtraukh LV (2010) Non-quantal release of acetylcholine from parasympathetic nerve terminals in the right atrium of rats. Exp Physiol 95:265-273. https://doi.org/10.1113/expphysiol.2009.050302

    Article  CAS  PubMed  Google Scholar 

  20. Bennett MR, Farnell L, Gibson WG, Lin YQ, Blair DH (2001) Quantal and non-quantal current and potential fields around individual sympathetic varicosities on release of ATP. Biophys J 80:1311-1328. https://doi.org/10.1016/S0006-3495(01)76105-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li M, Hu J, Chen Z, Meng J, Wang H, Ma X, Luo X (2006) Evidence for histamine as a neurotransmitter in the cardiac sympathetic nervous system. Am J Physiol Heart Circ Physiol 291:H45-H51. https://doi.org/10.1152/ajpheart.00939.2005

    Article  CAS  PubMed  Google Scholar 

  22. Pustovit KB, Potekhina VM, Ivanova AD, Petrov AM, Abramochkin DV, Kuzmin VS (2019) Extracellular ATP and beta-NAD alter electrical properties and cholinergic effects in the rat heart in age-specific manner. Purinergic Signal 15:107-117. https://doi.org/10.1007/s11302-019-09645-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smyth LM, Bobalova J, Mendoza MG, Lew C, Mutafova-Yambolieva VN (2004) Release of beta-nicotinamide adenine dinucleotide upon stimulation of postganglionic nerve terminals in blood vessels and urinary bladder. J Biol Chem 279:48893-48903. https://doi.org/10.1074/jbc.M407266200

    Article  CAS  PubMed  Google Scholar 

  24. Herring N, Lokale MN, Danson EJ, Heaton DA, Paterson DJ (2008) Neuropeptide Y reduces acetylcholine release and vagal bradycardia via a Y2 receptor-mediated, protein kinase C-dependent pathway. J Mol Cell Cardiol 44:477-485. https://doi.org/10.1016/j.yjmcc.2007.10.001

    Article  CAS  PubMed  Google Scholar 

  25. Herring N, Cranley J, Lokale MN, Li D, Shanks J, Alston EN, et al. (2012) The cardiac sympathetic co-transmitter galanin reduces acetylcholine release and vagal bradycardia: implications for neural control of cardiac excitability. J Mol Cell Cardiol 52:667-676. https://doi.org/10.1016/j.yjmcc.2011.11.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Heredia Mdel P, Delgado C, Pereira L, Perrier R, Richard S, Vassort G (2005) Neuropeptide Y rapidly enhances [Ca2+]i transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation. J Mol Cell Cardiol 38:205-212. https://doi.org/10.1016/j.yjmcc.2004.11.001

    Article  CAS  PubMed  Google Scholar 

  27. Rump LC, Riess M, Schwertfeger E, Michel MC, Bohmann C, Schollmeyer P (1997) Prejunctional neuropeptide Y receptors in human kidney and atrium. J Cardiovasc Pharmacol 29:656-661. https://doi.org/10.1097/00005344-199705000-00014

    Article  CAS  PubMed  Google Scholar 

  28. Oki Y, Teraoka H, Kitazawa T (2017) Neuropeptide Y (NPY) inhibits spontaneous contraction of the mouse atrium by possible activation of the NPY1 receptor. Auton Autacoid Pharmacol 37:23-28. https://doi.org/10.1111/aap.12055

    Article  CAS  PubMed  Google Scholar 

  29. Piper HM, Millar BC, McDermott BJ (1989) The negative inotropic effect of neuropeptide Y on the ventricular cardiomyocyte. Naunyn Schmiedebergs Arch Pharmacol 340:333-337. https://doi.org/10.1007/BF00168519

    Article  CAS  PubMed  Google Scholar 

  30. Zverev AA, Anikina TA, Maslyukov PM, Zefirov TL (2014) Role of neuropeptide Y in myocardial contractility of rats during early postnatal ontogeny. Bull Exp Biol Med 157:421-423. https://doi.org/10.1007/s10517-014-2581-2

    Article  CAS  PubMed  Google Scholar 

  31. Widiapradja A, Chunduri P, Levick SP (2017) The role of neuropeptides in adverse myocardial remodeling and heart failure. Cell Mol Life Sci 74:2019-2038. https://doi.org/10.1007/s00018-017-2452-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Protas L, Qu J, Robinson RB (2003) Neuropeptide y: neurotransmitter or trophic factor in the heart? News Physiol Sci 18:181-185. https://doi.org/10.1152/nips.01437.2003

    Article  CAS  PubMed  Google Scholar 

  33. Masliukov PM, Moiseev K, Emanuilov AI, Anikina TA, Zverev AA, Nozdrachev AD (2016) Development of neuropeptide Y-mediated heart innervation in rats. Neuropeptides 55:47-54. https://doi.org/10.1016/j.npep.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  34. Bell D, Allen AR, Kelso EJ, Balasubramaniam A, McDermott BJ (2002) Induction of hypertrophic responsiveness of cardiomyocytes to neuropeptide Y in response to pressure overload. J Pharmacol Exp Ther 303:581-591. https://doi.org/10.1124/jpet.102.038448

    Article  CAS  PubMed  Google Scholar 

  35. Pellieux C, Sauthier T, Domenighetti A, Marsh DJ, Palmiter RD, Brunner HR (2000) Neuropeptide Y (NPY) potentiates phenylephrine-induced mitogen-activated protein kinase activation in primary cardiomyocytes via NPY Y5 receptors. Proc Natl Acad Sci U S A 97:1595-1600. https://doi.org/10.1073/pnas.030533197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feng N, Huke S, Zhu G, Tocchetti CG, Shi S, Aiba T, Kaludercic N, Hoover DB, Beck SE, Mankowski JL, Tomaselli GF, Bers DM, Kass DA, Paolocci N (2015) Constitutive BDNF/TrkB signaling is required for normal cardiac contraction and relaxation. Proc Natl Acad Sci U S A 112:1880-1885. https://doi.org/10.1073/pnas.1417949112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burnstock G (2017) Purinergic Signaling in the Cardiovascular System. Circ Res 120:207-228. https://doi.org/10.1161/CIRCRESAHA.116.309726

    Article  CAS  PubMed  Google Scholar 

  38. Mei Q, Liang BT (2001) P2 purinergic receptor activation enhances cardiac contractility in isolated rat and mouse hearts. Am J Physiol Heart Circ Physiol 281:H334-H341. https://doi.org/10.1152/ajpheart.2001.281.1.H334

    Article  CAS  PubMed  Google Scholar 

  39. Anikina TA, Zverev AA, Sitdikov FG, Anisimova IN (2013) Interaction of adrenergic and purinergic receptors in the regulation of rat myocardial contractility in postnatal ontogeny. Russ J Dev Biol 44:296–301. https://doi.org/10.1134/S1062360413060027

    Article  CAS  Google Scholar 

  40. Pianca N, Di Bona A, Lazzeri E, Costantini I, Franzoso M, Prando V, et al. (2019) Cardiac sympathetic innervation network shapes the myocardium by locally controlling cardiomyocyte size through the cellular proteolytic machinery. J Physiol 597(14):3639-3656. https://doi.org/10.1113/JP276200

    Article  CAS  PubMed  Google Scholar 

  41. Vyskocil F, Magazanik LG (1977) Dual end-plate potentials at the single neuromuscular junction of the adult frog. Pflugers Arch 368:271-273. https://doi.org/10.1007/BF00585207

    Article  CAS  PubMed  Google Scholar 

  42. Thaemert JC (1966) Ultrastructure of cardiac muscle and nerve contiguities. J Cell Biol 29:156-162. https://doi.org/10.1083/jcb.29.1.156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kaludercic N, Takimoto E, Nagayama T, Feng N, Lai EW, Bedja D, Chen K, Gabrielson KL, Blakely RD, Shin JC, Pacak K, Kass DA, Lisa FD, Paolocci N (2010) Monoamine oxidase A-mediated enhanced catabolism of norepinephrine contributes to adverse remodeling and pump failure in hearts with pressure overload. Circ Res 106:193-202. https://doi.org/10.1161/CIRCRESAHA.109.198366

    Article  CAS  PubMed  Google Scholar 

  44. Bhogal NK, Hasan A, Gorelik J (2018) The Development of Compartmentation of cAMP Signaling in Cardiomyocytes: The Role of T-Tubules and Caveolae Microdomains. J Cardiovasc Dev Dis 5: 25. https://doi.org/10.3390/jcdd5020025

    Article  CAS  PubMed Central  Google Scholar 

  45. Wang J, Gareri C, Rockman HA (2018) G-Protein-Coupled Receptors in Heart Disease. Circ Res 123:716-735. https://doi.org/10.1161/CIRCRESAHA.118.311403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wengrowski AM, Wang X, Tapa S, Posnack NG, Mendelowitz D, Kay MW (2015) Optogenetic release of norepinephrine from cardiac sympathetic neurons alters mechanical and electrical function. Cardiovasc Res 105:143-150. https://doi.org/10.1093/cvr/cvu258

    Article  CAS  PubMed  Google Scholar 

  47. Tsentsevitsky AN, Zakyrjanova GF, Petrov AM (2020) Cadmium desynchronizes neurotransmitter release in the neuromuscular junction: Key role of ROS. Free Radic Biol Med 155:19-28. https://doi.org/10.1016/j.freeradbiomed.2020.05.017

    Article  CAS  PubMed  Google Scholar 

  48. Wingerd KL, Goodman NL, Tresser JW, Smail MM, Leu ST, Rohan SJ, Pring JL, Jacksan DY, Clegg DO (2002) Alpha 4 integrins and vascular cell adhesion molecule-1 play a role in sympathetic innervation of the heart. J Neurosci 22:10772-10780. https://doi.org/10.1523/JNEUROSCI.22-24-10772.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wu H, Lu Y, Barik A, Joseph A, Taketo MM, Xiong WC (2012) beta-Catenin gain of function in muscles impairs neuromuscular junction formation. Development 139:2392-2404. https://doi.org/10.1242/dev.080705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cifuentes-Diaz C, Nicolet M, Goudou D, Rieger F, Mege RM (1994) N-cadherin expression in developing, adult and denervated chicken neuromuscular system: accumulations at both the neuromuscular junction and the node of Ranvier. Development 120:1-11.

    Article  CAS  PubMed  Google Scholar 

  51. Krivoi II, Petrov AM (2019) Cholesterol and the Safety Factor for Neuromuscular Transmission. Int J Mol Sci 20: 1046. https://doi.org/10.3390/ijms20051046

    Article  CAS  PubMed Central  Google Scholar 

  52. Chen PJ, Martinez-Pena YVI, Aittaleb M, Akaaboune M (2016) AChRs Are Essential for the Targeting of Rapsyn to the Postsynaptic Membrane of NMJs in Living Mice. J Neurosci 36:5680-5685. https://doi.org/10.1523/JNEUROSCI.4580-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Oury J, Liu Y, Topf A, Todorovic S, Hoedt E, Preethish-Kumar V (2019) MACF1 links Rapsyn to microtubule- and actin-binding proteins to maintain neuromuscular synapses. J Cell Biol 218:1686-1705. https://doi.org/10.1083/jcb.201810023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Marchand S, Devillers-Thiery A, Pons S, Changeux JP, Cartaud J (2002) Rapsyn escorts the nicotinic acetylcholine receptor along the exocytic pathway via association with lipid rafts. J Neurosci 22:8891-8901. https://doi.org/10.1523/JNEUROSCI.22-20-08891.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Petrov AM, Zefirov AL (2013) Cholesterol and lipid rafts in the biological membranes. Role in the release, reception and ion channel functions. Usp Fiziol Nauk 44:17-38.

    CAS  PubMed  Google Scholar 

  56. Odnoshivkina UG, Sytchev VI, Nurullin LF, Giniatullin AR, Zefirov AL, Petrov AM (2015) β2-adrenoceptor agonist-evoked reactive oxygen species generation in mouse atria: implication in delayed inotropic effect. Eur J Pharmacol 765:140-153. https://doi.org/10.1016/j.ejphar.2015.08.020

    Article  CAS  PubMed  Google Scholar 

  57. Sytchev VI, Odnoshivkina YG, Ursan RV, Petrov AM (2017) Oxysterol, 5α-cholestan-3-one, modulates a contractile response to β2-adrenoceptor stimulation in the mouse atria: Involvement of NO signaling. Life Sci 188:131-140. https://doi.org/10.1016/j.lfs.2017.09.006

    Article  CAS  PubMed  Google Scholar 

  58. Odnoshivkina YG, Sytchev VI, Petrov AM (2017) Cholesterol regulates contractility and inotropic response to β2-adrenoceptor agonist in the mouse atria: Involvement of G i -protein–Akt–NO-pathway. J Mol Cell Cardiol 107:27-40. https://doi.org/10.1016/j.yjmcc.2016.05.001

    Article  CAS  PubMed  Google Scholar 

  59. Ursan R, Odnoshivkina UG, Petrov AM. (2019) Membrane cholesterol oxidation downregulates atrial beta-adrenergic responses in ROS-dependent manner. Cell Signal 67:109503. https://doi.org/10.1016/j.cellsig.2019.109503

    Article  CAS  PubMed  Google Scholar 

  60. Hansen MA, Bennett MR, Barden JA (1999) Distribution of purinergic P2X receptors in the rat heart. J Auton Nerv Syst 78:1-9. https://doi.org/10.1016/s0165-1838(99)00046-6

    Article  CAS  PubMed  Google Scholar 

  61. Petrov AM, Kravtsova VV, Matchkov VV, Vasiliev AN, Zefirov AL, Chibalin AV, et al. (2017) Membrane lipid rafts are disturbed in the response of rat skeletal muscle to short-term disuse. Am J Physiol Cell Physiol 312:C627-C637. https://doi.org/10.1152/ajpcell.00365.2016

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kravtsova VV, Petrov AM, Vasil’ev AN, Zefirov AL, Krivoi II (2015) Role of cholesterol in the maintenance of endplate electrogenesis in rat diaphragm. Bull Exp Biol Med 158(3):298-300. https://doi.org/10.1007/s10517-015-2745-863

    Article  CAS  PubMed  Google Scholar 

  63. Yang HQ, Wang LP, Gong YY, Fan XX, Zhu SY, Wang XT (2019) beta2-Adrenergic Stimulation Compartmentalizes beta1 Signaling Into Nanoscale Local Domains by Targeting the C-Terminus of beta1-Adrenoceptors. Circ Res 124:1350-1359. https://doi.org/10.1161/CIRCRESAHA.118.314322

    Article  CAS  PubMed  Google Scholar 

  64. Odnoshivkina UG, Sytchev VI, Starostin O, Petrov AM (2019) Brain cholesterol metabolite 24-hydroxycholesterol modulates inotropic responses to beta-adrenoceptor stimulation: The role of NO and phosphodiesterase. Life Sci 220:117-126. https://doi.org/10.1016/j.lfs.2019.01.054

    Article  CAS  PubMed  Google Scholar 

  65. Abadie C, Foucart S, Page P, Nadeau R (1996) Modulation of noradrenaline release from isolated human atrial appendages. J Auton Nerv Syst 61:269-276. https://doi.org/10.1016/s0165-1838(96)00093-8

    Article  CAS  PubMed  Google Scholar 

  66. Rump LC, Riera-Knorrenschild G, Schwertfeger E, Bohmann C, Spillner G, Schollmeyer P (1995) Dopaminergic and alpha-adrenergic control of neurotransmission in human right atrium. J Cardiovasc Pharmacol 26:462-470. https://doi.org/10.1097/00005344-199509000-00017

    Article  CAS  PubMed  Google Scholar 

  67. Isaka M, Kudo A, Imamura M, Kawakami H, Yasuda K (2007) Endothelin receptors, localized in sympathetic nerve terminals of the heart, modulate norepinephrine release and reperfusion arrhythmias. Basic Res Cardiol 102:154-162. https://doi.org/10.1007/s00395-006-0623-2

    Article  CAS  PubMed  Google Scholar 

  68. Sperlagh B, Erdelyi F, Szabo G, Vizi ES (2000) Local regulation of [(3)H]-noradrenaline release from the isolated guinea-pig right atrium by P(2X)-receptors located on axon terminals. Br J Pharmacol 131:1775-1783. https://doi.org/10.1038/sj.bjp.0703757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Machida T, Heerdt PM, Reid AC, Schafer U, Silver RB, Broekman MJ (2005) Ectonucleoside triphosphate diphosphohydrolase 1/CD39, localized in neurons of human and porcine heart, modulates ATP-induced norepinephrine exocytosis. J Pharmacol Exp Ther 313:570-577. https://doi.org/10.1124/jpet.104.081240

    Article  CAS  PubMed  Google Scholar 

  70. von Kugelgen I, Stoffel D, Starke K (1995) P2-purinoceptor-mediated inhibition of noradrenaline release in rat atria. Br J Pharmacol 115:247-254. https://doi.org/10.1111/j.1476-5381.1995.tb15870.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Larsen HE, Lefkimmiatis K, Paterson DJ (2016) Sympathetic neurons are a powerful driver of myocyte function in cardiovascular disease. Sci Rep 6:38898. https://doi.org/10.1038/srep38898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Larsen HE, Bardsley EN, Lefkimmiatis K, Paterson DJ (2016) Dysregulation of Neuronal Ca2+ Channel Linked to Heightened Sympathetic Phenotype in Prohypertensive States. J Neurosci 36:8562-8573. https://doi.org/10.1523/JNEUROSCI.1059-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shanks J, Mane S, Ryan R, Paterson DJ (2013) Ganglion-specific impairment of the norepinephrine transporter in the hypertensive rat. Hypertension 61:187-193. https://doi.org/10.1161/HYPERTENSIONAHA.112.202184

    Article  CAS  PubMed  Google Scholar 

  74. Jancovski N, Bassi JK, Carter DA, Choong YT, Connelly A, Nguyen TP (2013) Stimulation of angiotensin type 1A receptors on catecholaminergic cells contributes to angiotensin-dependent hypertension. Hypertension 62:866-871. https://doi.org/10.1161/HYPERTENSIONAHA.113.01474

    Article  CAS  PubMed  Google Scholar 

  75. Bellot M, Galandrin S, Boularan C, Matthies HJ, Despas F, Denis C (2015) Dual agonist occupancy of AT1-R-alpha2C-AR heterodimers results in atypical Gs-PKA signaling. Nat Chem Biol 11:271-279. https://doi.org/10.1038/nchembio.1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Toth AD, Gyombolai P, Szalai B, Varnai P, Turu G, Hunyady L (2017) Angiotensin type 1A receptor regulates beta-arrestin binding of the beta2-adrenergic receptor via heterodimerization. Mol Cell Endocrinol 442:113-124. https://doi.org/10.1016/j.mce.2016.11.027

    Article  CAS  PubMed  Google Scholar 

  77. Bardsley EN, Davis H, Buckler KJ, Paterson DJ (2018) Neurotransmitter Switching Coupled to beta-Adrenergic Signaling in Sympathetic Neurons in Prehypertensive States. Hypertension 71:1226-1238. https://doi.org/10.1161/HYPERTENSIONAHA.118.10844

    Article  CAS  PubMed  Google Scholar 

  78. Sperlagh B, Heinrich A, Csolle C (2007) P2 receptor-mediated modulation of neurotransmitter release-an update. Purinergic Signal 3:269-284. https://doi.org/10.1007/s11302-007-9080-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Braganca B, Nogueira-Marques S, Ferreirinha F, Fontes-Sousa AP, Correia-de-Sa P (2019) The Ionotropic P2X4 Receptor has Unique Properties in the Heart by Mediating the Negative Chronotropic Effect of ATP While Increasing the Ventricular Inotropy. Front Pharmacol 10:1103. https://doi.org/10.3389/fphar.2019.01103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Burgdorf C, Richardt D, Kurz T, Seyfarth M, Jain D, Katus HA (2001) Adenosine inhibits norepinephrine release in the postischemic rat heart: the mechanism of neuronal stunning. Cardiovasc Res 49:713-720. https://doi.org/10.1016/s0008-6363(00)00309-6

    Article  CAS  PubMed  Google Scholar 

  81. Olivas A, Gardner RT, Wang L, Ripplinger CM, Woodward WR, Habecker BA (2016) Myocardial Infarction Causes Transient Cholinergic Transdifferentiation of Cardiac Sympathetic Nerves via gp130. J Neurosci 36(2):479-488. https://doi.org/10.1523/JNEUROSCI.3556-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang L, Olivas A, Francis Stuart SD, Tapa S, Blake MR, Woodward WR (2020) Cardiac sympathetic nerve transdifferentiation reduces action potential heterogeneity after myocardial infarction. Am J Physiol Heart Circ Physiol 318:H558-H565. https://doi.org/10.1152/ajpheart.00412.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kanazawa H, Ieda M, Kimura K, Arai T, Kawaguchi-Manabe H, Matsuhashi (2010) Heart failure causes cholinergic transdifferentiation of cardiac sympathetic nerves via gp130-signaling cytokines in rodents. J Clin Invest 120:408-421. https://doi.org/10.1172/JCI39778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vaaga CE, Borisovska M, Westbrook GL (2016) Dual-transmitter neurons: functional implications of co-release and co-transmission. Curr Opin Neurobiol 29:25-32. https://doi.org/10.1016/j.conb.2014.04.010

    Article  CAS  Google Scholar 

  85. Franzoso M, Zaglia T, Mongillo M (2016) Putting together the clues of the everlasting neuro-cardiac liaison. Biochim Biophys Acta 1863:1904-1915. https://doi.org/10.1016/j.bbamcr.2016.01.009

    Article  CAS  PubMed  Google Scholar 

  86. Crowley C, Spencer SD, Nishimura MC, Chen KS, Pitts-Meek S, Armanini MP, Ling LM, McMahon SB, Shelton DL, Levinson AD (1994) Mice lacking nerve growth factor display perinatal loss of sensory and sympathetic neurons yet develop basal forebrain cholinergic neurons. Cell 76:1001-1011. https://doi.org/10.1016/0092-8674(94)90378-6

    Article  CAS  PubMed  Google Scholar 

  87. Smeyne RJ, Klein R, Schnapp A, Long LK, Bryant S, Lewin A, Lira SA, Barbacid M (1994) Severe sensory and sympathetic neuropathies in mice carrying a disrupted Trk/NGF receptor gene. Nature 368(6468):246-249. https://doi.org/10.1038/368246a0

    Article  CAS  PubMed  Google Scholar 

  88. Mok SA, Lund K, Campenot RB (2009) A retrograde apoptotic signal originating in NGF-deprived distal axons of rat sympathetic neurons in compartmented cultures. Cell Res 19:546-560. https://doi.org/10.1038/cr.2009.11

    Article  CAS  PubMed  Google Scholar 

  89. Oh Y, Cho GS, Li Z, Hong I, Zhu R, Kim MJ (2016) Functional Coupling with Cardiac Muscle Promotes Maturation of hPSC-Derived Sympathetic Neurons. Cell Stem Cell 19:95-106. https://doi.org/10.1016/j.stem.2016.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kreipke RE, Birren SJ (2015) Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal. J Physiol 593:5057-5073. https://doi.org/10.1113/JP270917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zaglia T, Milan G, Franzoso M, Bertaggia E, Pianca N, Piasentini E, Voltarelli VA, Chiavegato D, Brum PC, Glass DJ, Schaffino S, Sandri M, Mongillo M (2013) Cardiac sympathetic neurons provide trophic signal to the heart via beta2-adrenoceptor-dependent regulation of proteolysis. Cardiovasc Res 97:240-250. https://doi.org/10.1093/cvr/cvs320

    Article  CAS  PubMed  Google Scholar 

  92. Myagmar BE, Flynn JM, Cowley PM, Swigart PM, Montgomery MD, Thai K, Nair D, Gupta R, Deng Dx, Hosoda C, Melov S, Baker AJ, Simpson PC (2017) Adrenergic Receptors in Individual Ventricular Myocytes: The Beta-1 and Alpha-1B Are in All Cells, the Alpha-1A Is in a Subpopulation, and the Beta-2 and Beta-3 Are Mostly Absent. Circ Res 120:1103-1115. https://doi.org/10.1161/CIRCRESAHA.117.310520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gao X, Lowry PR, Zhou X, Depry C, Wei Z, Wong GW, Zhang Y (2011) PI3K/Akt signaling requires spatial compartmentalization in plasma membrane microdomains. Proc Natl Acad Sci USA 108:14509-14514. https://doi.org/10.1073/pnas.1019386108

    Article  PubMed  PubMed Central  Google Scholar 

  94. Belotti E, Schaeffer L (2020) Regulation of Gene expression at the neuromuscular Junction. Neurosci Lett 735:135163. https://doi.org/10.1016/j.neulet.2020.135163

    Article  CAS  PubMed  Google Scholar 

  95. Wang J, Gareri C, Rockman HA (2018) G-Protein–Coupled Receptors in Heart Disease. Circul Res 123:716-735. https://doi.org/10.1161/circresaha.118.311403

    Article  CAS  Google Scholar 

  96. White IA, Gordon J, Balkan W, Hare JM (2015) Sympathetic Reinnervation Is Required for Mammalian Cardiac Regeneration. Circ Res117(12):990-994. https://doi.org/10.1161/CIRCRESAHA.115.307465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hoffman JI (1987) Transmural myocardial perfusion. Prog Cardiovasc Dis 29:429-464. https://doi.org/10.1016/0033-0620(87)90016-8

    Article  CAS  PubMed  Google Scholar 

  98. Yoshioka K, Gao DW, Chin M, Stillson C, Penades E, Lesh M, et al. (2000) Heterogeneous sympathetic innervation influences local myocardial repolarization in normally perfused rabbit hearts. Circulation 101:1060-1066. https://doi.org/10.1161/01.cir.101.9.1060

    Article  CAS  PubMed  Google Scholar 

  99. Momose M, Tyndale-Hines L, Bengel FM, Schwaiger M (2001) How heterogeneous is the cardiac autonomic innervation? Basic Res Cardiol 96:539-546. https://doi.org/10.1007/s003950170004

    Article  CAS  PubMed  Google Scholar 

  100. Millar BC, Schluter KD, Zhou XJ, McDermott BJ, Piper HM (1994) Neuropeptide Y stimulates hypertrophy of adult ventricular cardiomyocytes. Am J Physiol 266:C1271-1277. https://doi.org/10.1152/ajpcell.1994.266.5.C1271

    Article  CAS  PubMed  Google Scholar 

  101. Kanevskij M, Taimor G, Schafer M, Piper HM, Schluter KD (2002) Neuropeptide Y modifies the hypertrophic response of adult ventricular cardiomyocytes to norepinephrine. Cardiovasc Res 53:879-887. https://doi.org/10.1016/s0008-6363(01)00517-x

    Article  CAS  PubMed  Google Scholar 

  102. Wang J, Hao D, Zeng L, Zhang Q, Huang W (2021) Neuropeptide Y mediates cardiac hypertrophy through microRNA-216b/FoxO4 signaling pathway. Int J Med Sci 18:18-28. https://doi.org/10.7150/ijms.51133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are deeply grateful to Acad. A.L. Zefirov for his permanent support in developing neuromuscular physiology within the Kazan Physiological School, as well as to reviewers of this article for valuable advices and comments.

Funding

This work was supported by the Russian Scientific Foundation (grant No. 21-14-00044, https://rscf.ru/project/21-14-00044/). A.M. Petrov was supported by the Russian Federation government assignment to FRC Kazan Scientific Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

Y.G. Odnoshivkina and A.M. Petrov were responsible for data collection, as well as illustrating and editing the article; A.M. Petrov advanced the article’s idea and wrote a manuscript.

Corresponding author

Correspondence to A. M. Petrov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no evident or potential conflict of interest as related to the publication of this article.

Additional information

Translated by A. Polyanovsky

Russian Text © The Author(s), 2021, published in Rossiiskii Fiziologicheskii Zhurnal imeni I.M. Sechenova, 2021, Vol. 107, Nos. 4–5, pp. 474–491https://doi.org/10.31857/S0869813921040117.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odnoshivkina, Y.G., Petrov, A.M. The Role of Neuro-Cardiac Junctions in Sympathetic Regulation of the Heart. J Evol Biochem Phys 57, 527–541 (2021). https://doi.org/10.1134/S0022093021030078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022093021030078

Keywords:

Navigation