Skip to main content
Log in

On the chemical bonding features in palladium containing compounds: A combined QTAIM/DFT topological analysis

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Topological analyses of the electron density on N-benzoyl-L-pheylalanine and its palladium(II) complexes are carried out using the quantum theory of atoms in molecules (QTAIM) at the M06/6-31G(d) theoretical level. The topological parameters derived from the Bader theory are also analyzed; these are characteristics of Pd bond critical points and ring critical points. The calculated structural parameters are the highest occupied molecular orbital energy (E HOMO), the lowest unoccupied molecular orbital energy (E LUMO), the hardness (η), the softness (S), the absolute electronegativity (χ), the electrophilicity index (ω), and the fractions of electrons transferred (ΔN) from ethylenediamine, 2,2′-bipyridine and 1,10-phenanthroline complexes to N-benzoyl-L-pheylalanine. The numerous correlations and dependences between the energy terms of the symmetry adapted perturbation theory approach, geometrical, topological, and energy parameters are detected and described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Fuertes, C. Alonso, and J. M. Pérez, Chem. Rev., 103, 645 (2003).

    Article  CAS  Google Scholar 

  2. W. Dempke, W. Voigt, A. Grothey, et al., Anticancer Drugs, 11, 225 (2000).

    Article  CAS  Google Scholar 

  3. D. Wang and S. J. Lippard, Nat. Rev. Drug Discovery, 4, 307 (2005).

    Article  CAS  Google Scholar 

  4. S. Ray, R. Mohan, J. K. Singh, et al., J. Am. Chem. Soc., 129, 15042 (2007).

    Article  CAS  Google Scholar 

  5. J. Ruiz, J. Lorenzo, and C. Vicente, Inorg. Chem., 47, 6990 (2008).

    Article  CAS  Google Scholar 

  6. E. J. Gao, M. C. Zhu, Y. Huang, et al., Eur. J. Med. Chem., 45, 1034 (2010).

    Article  CAS  Google Scholar 

  7. L. W. Wang, S. Y. Liu, J. J. Wang, et al., Synth. React. Inorg., Met.-Org., Nano-Met. Chem., 44 (2014).

    Google Scholar 

  8. A. Matilla, J. Tercero, J. Niclós-Gutiérrez, et al., J. Inorg. Biochem., 55, 235 (1994).

    Article  CAS  Google Scholar 

  9. P. C. Bruijnincx and P. J. Sadler, Curr. Opin. Chem. Biol., 12, 197 (2008).

    Article  CAS  Google Scholar 

  10. M. Fuertes, J. Castilla, C. Alonso, et al., Curr. Med. Chem., 10, 257 (2003).

    Article  CAS  Google Scholar 

  11. R. F. W. Bader, T. S. Slee, D. Cremer, et al., J. Am. Chem. Soc., 105, 5061 (1983).

    Article  CAS  Google Scholar 

  12. R. G. Parr and R. G. P. W. Yang, Density-Functional Theory of Atoms and Molecules, Oxford, UK (1989).

    Google Scholar 

  13. R. G. Parr, S. R. Gadre, and L. J. Bartolotti, Proc. Natl. Acad. Sci. USA., 76, 2522 (1979).

    Article  CAS  Google Scholar 

  14. M. Frisch, G. Trucks, H. Schlegel, et al., Gaussian 03, Wallingford, CT (2004).

    Google Scholar 

  15. B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev., 94, 1887 (1994).

    Article  CAS  Google Scholar 

  16. H. J. Werner and P. J. Knowles, MOLPRO suite of programs, version 2012.

    Google Scholar 

  17. A. Ranganathan, G. Kulkarni, and C. Rao, J. Phys. Chem. A, 107, 6073 (2003).

    Article  CAS  Google Scholar 

  18. T.-H. Tang, E. Deretey, S. K. Jensen, et al., Eur. Phys. J. D, 37, 217 (2006).

    Article  CAS  Google Scholar 

  19. P. M. Dominiak, E. Grech, G. Barr, et al., Chem.–Eur. J., 9, 963 (2003).

    Article  CAS  Google Scholar 

  20. R. G. Parr and W. Yang, J. Am. Chem. Soc., 106, 4049 (1984).

    Article  CAS  Google Scholar 

  21. P. Geerlings, F. De Proft, and W. Langenaeker, Chem. Rev., 103, 1793 (2003).

    Article  CAS  Google Scholar 

  22. R. G. Parr, L. V. Szentpaly, and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999).

    Article  CAS  Google Scholar 

  23. R. G. Pearson, J. Am. Chem. Soc., 85, 3533 (1963).

    Article  CAS  Google Scholar 

  24. A. Lesar and I. Milošev, Chem. Phys. Lett., 483, 198 (2009).

    Article  CAS  Google Scholar 

  25. S. Martinez, Mater. Chem. Phys., 77, 97 (2003).

    Article  CAS  Google Scholar 

  26. R. G. Pearson, Inorg. Chem., 27, 734 (1988).

    Article  CAS  Google Scholar 

  27. J. Padmanabhan, R. Parthasarathi, V. Subramanian, et al., J. Phys. Chem. A, 111, 1358 (2007).

    Article  CAS  Google Scholar 

  28. K. Senthilkumar, M. Ramaswamy, and P. Kolandaivel, Int. J. Quantum Chem., 81, 4 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pourestarabadi.

Additional information

The text was submitted by the authors in English.

Zhurnal Strukturnoi Khimii, Vol. 58, No. 3, pp. 499-505, March-April, 2017.

Original Russian Text © 2017 L. Zeidabadinejad, M. Dehestani, S. Pourestarabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeidabadinejad, L., Dehestani, M. & Pourestarabadi, S. On the chemical bonding features in palladium containing compounds: A combined QTAIM/DFT topological analysis. J Struct Chem 58, 471–478 (2017). https://doi.org/10.1134/S0022476617030076

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476617030076

Keywords

Navigation