Skip to main content
Log in

Electronic Structure of Eu(III) Adducts with OP(C6H5)3 and OP[NMe2]3

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Ultraviolet photoelectron spectroscopy in the gas phase (UPS, HeI), X-ray photoelectron spectroscopy in the condensed phase (XPS, MgKα), and quantum chemical methods (DFT) are used to study the adducts of Eu(III) tris-hexafluoroacetylacetonate with two molecules of four-coordinated phosphorus, namely HMPA (OP[N(CH3)2]3) and TPPO (OP(C6H5)3). Spectral bands of valence and core levels are interpreted using energy calculations and localization of Kohn-Sham orbitals. It is shown that TPPO and HMPA molecules influence the electronic structure of the complexes; positions and localizations of molecular orbitals are determined, the nature of bonding between Eu(III) and three chelate ligands and two neutral molecules is established. The differences in positions and compositions of occupied and vacant orbitals participating in energy transfer under excitation are shown. It is estimated that the bonding energy between Eu(hfac)3 and the two molecules is 10.91 eV for OP(C6H5)3, 12.62 eV for OP[NMe2]3, and 24.9 eV for SP[NMe2]3. It is shown how the differences between the energies and localizations of HOMOs of neutral molecules affect the structure, localization of adducts by the frontier molecular orbital (MO) and HOMO-LUMO gaps and how these differences determine the parameters of “antenna” ligand effects and the relative quantum yield of the luminescence of the adduct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. de Sa, O. L. Malta, C. de Mello Donega, A. M. Simas, R. L. Longo, P. A. Santa-Cruz, and E. F. da Silva Jr. Coord. Chem. Rev., 2000, 196, 165.

    Article  Google Scholar 

  2. S. V. Eliseeva, S. I. Troyanov, N. P. Kuz'mina, O. V. Mirzov, and A. G. Vitukhnovsky. J. Alloys Compd., 2004, 374, 293.

    CAS  Google Scholar 

  3. N. P. Kuz'mina and S. V. Eliseeva. Russ. J. Inorg. Chem., 2006, 51, 73.

    Article  Google Scholar 

  4. V. V. Utochnikova, O. V. Kotova, E. M. Shchukina, S. V. Eliseeva, and N. P. Kuz'mina. Russ. J. Inorg. Chem., 2008, 53, 1878.

    Article  Google Scholar 

  5. B. V. Bukvetskii, I. V. Kalinovskay, A. N. Zadorozhnaya, and V. E. Karasev. Russ. J. Inorg. Chem., 2008, 53, 598.

    Article  Google Scholar 

  6. J. Vuojola, U. Lamminmäki, and T. Soukka. Anal. Chem., 2009, 81, 5033.

    Article  CAS  PubMed  Google Scholar 

  7. X. Hui, W. Ying, Z. Baomin, and H. Wei. J. Rare Earths., 2010, 28, 666.

    Article  CAS  Google Scholar 

  8. V. F. Shul'gin, S. V. Abkhairova, O. V. Konnik, S. B. Meshkova, Z. M. Topilova, M. A. Kiskin, and I. L. Eremenko. Russ. J. Inorg. Chem., 2012, 57, 420.

    Article  CAS  Google Scholar 

  9. I. A. Ibarra, T. W. Hesterberg, B. J. Holliday, V. M. Lynch, and S. M. Humphrey. Dalton Trans., 2012, 41, 8003.

    Article  CAS  PubMed  Google Scholar 

  10. K. Binnemans. Coord. Chem. Rev., 2015, 295, 1.

    Article  CAS  Google Scholar 

  11. K. P. Zhuravlev, V. I. Tsaryuk, and V. A. Kudryashova. J. Fluorine Chem., 2018, 212, 137-143.

    Article  CAS  Google Scholar 

  12. S. G. Rachor, P. A. Cleaves, S. D. Robertson, and S. M. Mansell. J. Organomet. Chem., 2018, 657, 101.

    Article  CAS  Google Scholar 

  13. D. M. Lyubov, A. V. Cherkasov, G. K. Fukin, K. A. Lyssenko, E. A. Rychagova, S. Y. Ketkov, and A. A. Trifonov. Dalton Trans., 2018, 47, 438.

    Article  CAS  PubMed  Google Scholar 

  14. A. S. Krupin, A. A. Knyazev, and Y. G. Galyametdinov. Liq. Cryst. Their Appl, 2018, 18, 15.

    Article  CAS  Google Scholar 

  15. A. A. Knyazev, A. S. Krupin, B. Heinrich, B. Donnio, and Y. G. Galyametdinov. Dyes Pigm., 2018, 148, 492.

    Article  CAS  Google Scholar 

  16. Y.-P. Tong, Y.-W. Lin, and H. Liu. J. Struct. Chem., 2018, 59, 1088.

    Article  CAS  Google Scholar 

  17. R. Pogreb, B. Finkelshtein, Y. Shmukler, A. Musina, O. Popov, O. Stanevsky, S. Yitzchaik, A. Gladkikh, A. Shulzinger, V. Streltsov, D. Davidov, and E. Bormashenko. Polym. Adv. Technol., 2004, 15, 414.

    Article  CAS  Google Scholar 

  18. I. V. Kalinovskaya, A. N. Zadorozhnaya, and A. G. Mirochnik. Opt. Spectrosc., 2017, 123, 388.

    Article  CAS  Google Scholar 

  19. K. Buczko and M. Karbowiak. J. Lumin., 2013, 143, 241.

    Article  CAS  Google Scholar 

  20. Z. Su, N. Li, E. S. Magden, M. B. Purnawirman, T. N. Adam, G. Leake, D. Coolbaugh, J. D. Bradley, and M. R. Watts. Opt. Lett., 2016, 41, 5708.

    Article  CAS  PubMed  Google Scholar 

  21. T. Wang, M. Liu, and Y. Wang. Mater. Res. Bull., 2017, 95, 426.

    Article  CAS  Google Scholar 

  22. N. Lei, D. Shen, X. Wang, J. Wang, Q. Li, and X. Chen. J. Colloid Interface Sci., 2018, 529, 122.

    Article  CAS  PubMed  Google Scholar 

  23. C. A. Barta, K. Sachs-Barrable, J. Jia, K. H. Thompson, K. M. Wasan, and C. Orvig. Dalton Trans., 2007, 43, 5019.

    Article  CAS  Google Scholar 

  24. J.-C. G. Bünzli. Chem. Rev., 2010, 110, 2729.

    Article  PubMed  CAS  Google Scholar 

  25. G. Blasse and B. C. Grabmaier. Luminescent Materials. Springer-Verlag: Berlin, 1994, 232.

    Book  Google Scholar 

  26. G. A. Hebbink. Luminescent Materials Based on Lanthanide Ions. Basic Properties and Application in NIR-LEDs and Optical Amplifiers. Twente University Press: Enschede, 2002.

    Google Scholar 

  27. J.-C. G. Bünzli, S. Comby, A.-S. Chauvin, and C. D. B. Vandevyver. J. Rare Earths., 2007, 25, 257.

    Article  Google Scholar 

  28. K. Binnemans. Handbook on the Physics and Chemistry of Rare Earths. Elsevier, 2005, 35.

    Google Scholar 

  29. K. Binnemans. Chem. Rev., 2009, 109, 4283

    Article  CAS  PubMed  Google Scholar 

  30. J.-C. G. Bünzli and S. V. Eliseeva. Chem. Sci., 2013, 4, 1939.

    Article  CAS  Google Scholar 

  31. J. Feng and H. Zhang. Chem. Soc. Rev., 2013, 42, 387.

    Article  CAS  PubMed  Google Scholar 

  32. V. I. Nefedov and V. I. Vovna. Electronic Structure of Chemical Compounds. Nauka: Moscow, 1987, 347.

    Google Scholar 

  33. S. Hüfner. Springer: Berlin, 2003, 601.

  34. I. S. Osmushko, V. I. Vovna, S. A. Tikhonov, Y. V. Chizhov, and I. V. Krauklis. Int. J. Quantum Chem., 2016, 116, 325.

    Article  CAS  Google Scholar 

  35. V. V. Korochentsev, V. I. Vovna, I. V. Kalinovskaya, A. A. Komissarov, A. A. Dotsenko, A. V. Shurygin, A. G. Mirochnik, and V. I. Sergienko. J. Struct. Chem., 2014, 55, 1057.

    Article  CAS  Google Scholar 

  36. A. V. Shurygin, V. V. Korochentsev, I. S. Os'mushko, A. I. Cherednichenko, V. A. Yashin, and V. I. Vovna. J. Struct. Chem., 2015, 56, 538.

    Article  CAS  Google Scholar 

  37. S. Ö. Yildirim, Z. Büyükmumcu, S. D. Dogan, and R. J. Butcher. J. Struct. Chem., 2018, 59, 1797.

    Article  CAS  Google Scholar 

  38. V. I. Vovna, V. V. Gorchakov, A. I. Cherednichenko, N. G. Dzyubenko, N. P. Kuz'mina, and L. I. Martynenko. Russ. J. Coord. Chem., 1991, 17, 571.

    CAS  Google Scholar 

  39. B. I. Westcott, T. J. Seguin, and N. E. Gruhn. J. Electron Spectrosc. Relat. Phenom., 2014, 193, 100.

    Article  CAS  Google Scholar 

  40. A. I. Cherednichenko, V. I. Vovna, V. V. Gorchakov, and N. P. Kuz'mina. Russ. J. Coord. Chem., 1990, 16, 1283.

    CAS  Google Scholar 

  41. I. Novak and B. Kovac. J. Organomet. Chem., 2007, 692, 2299.

    Article  CAS  Google Scholar 

  42. V. I. Vovna, V. V. Gorchakov, V. E. Karasev, and A. I. Cherednichenko. J. Struct. Chem., 1989, 30, 147.

    Article  CAS  Google Scholar 

  43. V. I. Vovna, V. V. Gorchakov, and A. Yu. Mamaev. Russ. J. Coord. Chem., 1984, 10, 1362.

    CAS  Google Scholar 

  44. A. I. Cherednichenko. Photoelectron Spectroscopy of P-Diketonate Complexes of Transition Metals and Their Adducts. Vladivostok, 1990, 182.

    Google Scholar 

  45. V. I. Vovna, I. B. L'vov, S. N. Slabzhennikov, and A. Yu. Ustinov. J. Electron Spectrosc. Relat. Phenom., 1998, 88-91, 109.

    Article  CAS  Google Scholar 

  46. V. I. Vovna, V. V. Korochentsev, A. I. Cherednichenko, and A. V. Shurygin. Russ. Chem. Bull., 2015, 64, 1701.

    Article  CAS  Google Scholar 

  47. A. V. Shurygin, V. V. Korochentsev, A. I. Cherednichenko, and V. I. Vovna. J. Struct. Chem., 2017, 58, 1112.

    Article  CAS  Google Scholar 

  48. A. V. Shurygin, V. V. Korochentsev, A. I. Cherednichenko, A. G. Mirochnik, I. V. Kalinovskaya, and V. I. Vovna. J. Mol. Struct., 2018, 1155, 133.

    Article  CAS  Google Scholar 

  49. CasaXPS, Casa Software Ltd, 2006.

  50. A. A. Granovsky. Firefly v.8.1, http://classic.chem.msu.su/gran/firefly/index.html>

  51. M. Dolg, K. A. Peterson, P. Schwerdtfeger, and H. Stoll. Pseudopotentials of the Stuttgart/Cologne group. Institute for Theoretical Chemistry, DE.

  52. V. I. Vovna, V. V. Korochentsev, A. A. Komissarov, and I. B. L'vov. Russ. J. Phys. Chem. B, 2013, 7, 220.

    Article  CAS  Google Scholar 

  53. V. A. Petrov, W. J. Marshall, and V. V. Grushin. Chem. Commun., 2002, 5, 520.

    Article  CAS  Google Scholar 

  54. V. I. Vovna, S. H. Lopatina, R. Petzold, F. I. Vilesov, and M. E. Akopyan. Opt. Spektrosk., 1973, 34, 868.

    CAS  Google Scholar 

  55. V. I. Vovna, S. H. Lopatina, R. Petzold, F. I. Vilesov. Khim. Vys. Energ., 1975, 9, 16.

    Google Scholar 

  56. V. I. Vovna, S. A. Tikhonov, M. V. Kazachek, I. B. L'vov, V. V. Korochentsev, E. V. Fedorenko, and A. G. Mirochnik. J. Electron Spectrosc. Relat. Phenom., 2013, 189, 116.

    Article  CAS  Google Scholar 

  57. Yu. A. Teterin and A. Yu. Teterin. Russ. Chem. Rev., 2002, 71, 347.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank I.V. Krauklis for OVGF simulations using the computing resources of the SPbU Computing Centre.

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation within State Contract No. 3.2168.2017/4.6 and by grant No. 16.5906.2017/6.7 of the Far Eastern Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shurygin.

Additional information

Conflict of Interests

The authors declare that they have no conflict of interests.

Russian Text © The Author(s), 2019, published in Zhurnal Strukturnoi Khimii, 2019, Vol. 60, No. 12, pp. 2010–2024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shurygin, A.V., Vovna, V.I., Korochentsev, V.V. et al. Electronic Structure of Eu(III) Adducts with OP(C6H5)3 and OP[NMe2]3. J Struct Chem 60, 1925–1939 (2019). https://doi.org/10.1134/S0022476619120084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476619120084

Keywords

Navigation